@article{BergBilzRistowetal.2008, author = {Berg, Christian and Bilz, Melanie and Ristow, Michael and Raab, Bernd}, title = {Important Plant Areas (IPA) : ein internationales Konzept zum Schutz der Wildpflanzen der Erde}, year = {2008}, language = {de} } @article{BergholzJeltschWeissetal.2015, author = {Bergholz, Kolja and Jeltsch, Florian and Weiß, Lina and Pottek, Janine and Geißler, Katja and Ristow, Michael}, title = {Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.02193}, pages = {1547 -- 1554}, year = {2015}, abstract = {Fertilization causes species loss and species dominance changes in plant communities worldwide. However, it still remains unclear how fertilization acts upon species functional traits, e.g. seed mass. Seed mass is a key trait of the regeneration strategy of plants, which influences a range of processes during the seedling establishment phase. Fertilization may select upon seed mass, either directly by increased nutrient availability or indirectly by increased competition. Since previous research has mainly analyzed the indirect effects of fertilization, we disentangled the direct and indirect effects to examine how nutrient availability and competition influence the seed mass relationships on four key components during seedling establishment: seedling emergence, time of seedling emergence, seedling survival and seedling growth. We conducted a common garden experiment with 22 dry grassland species with a two-way full factorial design that simulated additional nutrient supply and increased competition. While we found no evidence that fertilization either directly by additional nutrient supply or indirectly by increased competition alters the relationship between seed mass and (time of) seedling emergence, we revealed that large seed mass is beneficial under nutrient-poor conditions (seedlings have greater chances of survival, particularly in nutrient-poor soils) as well as under competition (large-seeded species produced larger seedlings, which suffered less from competition than small-seeded species). Based on these findings, we argue that both factors, i.e. nutrient availability and competition intensity, ought to be considered to understand how fertilization influences seedling establishment and species composition with respect to seed mass in natural communities. We propose a simple conceptual model, in which seed mass in natural communities is determined by competition intensity and nutrient availability. Here, we hypothesize that seed mass shows a U-shaped pattern along gradients of soil fertility, which may explain the contrasting soil fertility-seed mass relationships found in the recent literature.}, language = {en} } @article{BergholzMayGiladietal.2017, author = {Bergholz, Kolja and May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {24}, journal = {Perspectives in plant ecology, evolution and systematics}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2017.01.001}, pages = {138 -- 146}, year = {2017}, abstract = {Spatial environmental heterogeneity is considered a fundamental factor for the maintenance of plant species richness. However, it still remains unclear whether heterogeneity may also facilitate coexistence at fine grain sizes or whether other processes, like mass effects and source sink dynamics due to dispersal, control species composition and diversity at these scales. In this study, we used two complimentary analyses to identify the role of heterogeneity within 15 m x 15 m plots for the coexistence of species-rich annual communities in a semi-arid environment along a steep precipitation gradient. Specifically, we: (a) analyzed the effect of environmental heterogeneity on species, functional and phylogenetic diversity within microsites (alpha diversity, 0.06 m(2) and 1 m(2)), across microsites (beta diversity), and diversity at the entire plot (gamma diversity); (b) further we used two null models to detect non-random trait and phylogenetic patterns in order to infer assembly processes, i.e. whether co-occurring species tend to share similar traits (trait convergence) or dissimilar traits (trait divergence). In general, our results showed that heterogeneity had a positive effect on community diversity. Specifically, for alpha diversity, the effect was significant for functional diversity, and not significant for either species or phylogenetic diversities. For beta diversity, all three measures of community diversity (species, functional, and phylogenetic) increased significantly, as they also did for gamma diversity, where functional measures were again stronger than for species or phylogenetic measures. In addition, the null model approach consistently detected trait convergence, indicating that species with similar traits tended to co-occur and had high abundances in a given microsite. While null model analysis across the phylogeny partly supported these trait findings, showing phylogenetic underdispersion at the 1m(2) grain size, surprisingly when species abundances in microsites were analyzed they were more evenly distributed across the phylogenetic tress than expected (phylogenetic overdispersion). In conclusion, our results provide compelling support that environmental heterogeneity at a relatively fine scale is an important factor for species co-existence as it positively affects diversity as well as influences species assembly. Our study underlines the need for trait-based approaches conducted at fine grain sizes in order to better understand species coexistence and community assembly. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{BergholzMayRistowetal.2017, author = {Bergholz, Kolja and May, Felix and Ristow, Michael and Giladi, Itamar and Ziv, Yaron and Jeltsch, Florian}, title = {Two Mediterranean annuals feature high within-population trait variability and respond differently to a precipitation gradient}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {25}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2017.11.001}, pages = {48 -- 58}, year = {2017}, abstract = {Intraspecific trait variability plays an important role in species adaptation to climate change. However, it still remains unclear how plants in semi-arid environments respond to increasing aridity. We investigated the intraspecific trait variability of two common Mediterranean annuals (Geropogon hybridus and Crupina crupinastrum) with similar habitat preferences. They were studied along a steep precipitation gradient in Israel similar to the maximum predicted precipitation changes in the eastern Mediterranean basin (i.e. -30\% until 2100). We expected a shift from competitive ability to stress tolerance with decreasing precipitation and tested this expectation by measuring key functional traits (canopy and seed release height, specific leaf area, N-and P-leaf content, seed mass). Further, we evaluated generative bet-hedging strategies by different seed traits. Both species showed different responses along the precipitation gradient. C. crupinastrum exhibited only decreased plant height toward saridity, while G. hybridus showed strong trends of generative adaptation to aridity. Different seed trait indices suggest increased bet-hedging of G. hybridus in arid environments. However, no clear trends along the precipitation gradient were observed in leaf traits (specific leaf area and leaf N-/P-content) in both species. Moreover, variance decomposition revealed that most of the observed trait variation (>> 50\%) is found within populations. The findings of our study suggest that responses to increased aridity are highly species-specific and local environmental factors may have a stronger effect on intraspecific trait variation than shifts in annual precipitation. We therefore argue that trait-based analyses should focus on precipitation gradients that are comparable to predicted precipitation changes and compare precipitation effects to effects of local environmental factors. (C) 2017 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{BergholzSittelRistowetal.2022, author = {Bergholz, Kolja and Sittel, Lara-Pauline and Ristow, Michael and Jeltsch, Florian and Weiss, Lina}, title = {Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity}, series = {Ecology and evolution}, volume = {12}, journal = {Ecology and evolution}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8708}, pages = {11}, year = {2022}, abstract = {Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.}, language = {en} } @article{BergholzSittelRistowetal.2022, author = {Bergholz, Kolja and Sittel, Lara-Pauline and Ristow, Michael and Jeltsch, Florian and Weiß, Lina}, title = {Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, number = {3}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken (New Jersey)}, issn = {2045-7758}, doi = {10.1002/ece3.8708}, pages = {11}, year = {2022}, abstract = {Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.}, language = {en} } @misc{BergholzSittelRistowetal.2022, author = {Bergholz, Kolja and Sittel, Lara-Pauline and Ristow, Michael and Jeltsch, Florian and Weiß, Lina}, title = {Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1298}, issn = {1866-8372}, doi = {10.25932/publishup-57730}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577307}, pages = {11}, year = {2022}, abstract = {Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.}, language = {en} } @article{BleekerSchmitzRistow2007, author = {Bleeker, Walter and Schmitz, Ulf and Ristow, Michael}, title = {Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity}, issn = {0006-3207}, doi = {10.1016/j.biocon.2007.02.004}, year = {2007}, abstract = {We explored the extent of interspecific hybridisation between alien and native plant species in Germany with a special focus on the potential threat for native biodiversity. In total we listed 134 hybrids which are interpreted as products of hybridisation between 81 alien and 109 native plant species (including 13 archeophytes) that occur in Germany Seventy-five of these hybrids have been recorded in Germany, while the remaining 59 hybrids have not been detected in Germany yet, although both parental species currently occur in Germany. Interspecific hybridisation between abundant alien and rare native species can threaten populations of the native species through outbreeding depression and/ or through high rates of gene flow swamping native populations. We identified 37 threatened native plant species which hybridise with aliens. Seventeen of these threatened plant species may suffer from outbreeding depression when hybridising with a more abundant alien invader (minority disadvantage). Using hybrid abundance as an indicator of hybrid fitness we argue that introgression of alien genes may affect the gene pool of eight threatened native plant species. Consequently, hybridisation with aliens has to be considered as an additional risk potentially leading to a loss of biodiversity and should be included in the repertoire of causes for rare species extinction in German Red Lists of threatened plant species.}, language = {en} } @unpublished{CierjacksKowarikJoshietal.2013, author = {Cierjacks, Arne and Kowarik, Ingo and Joshi, Jasmin Radha and Hempel, Stefan and Ristow, Michael and von der Lippe, Moritz and Weber, Ewald}, title = {Biological flora of the british isles: robinia pseudoacacia}, series = {The journal of ecology}, volume = {101}, journal = {The journal of ecology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.12162}, pages = {1623 -- 1640}, year = {2013}, abstract = {This account presents information on all aspects of the biology of Robinia pseudoacacia L. that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, and history and conservation.Robinia pseudoacacia, false acacia or black locust, is a deciduous, broad-leaved tree native to North America. The medium-sized, fast-growing tree is armed with spines, and extensively suckering. It has become naturalized in grassland, semi-natural woodlands and urban habitats. The tree is common in the south of the British Isles and in many other regions of Europe.Robinia pseudoacacia is a light-demanding pioneer species, which occurs primarily in disturbed sites on fertile to poor soils. The tree does not tolerate wet or compacted soils. In contrast to its native range, where it rapidly colonizes forest gaps and is replaced after 15-30years by more competitive tree species, populations in the secondary range can persist for a longer time, probably due to release from natural enemies.Robinia pseudoacacia reproduces sexually, and asexually by underground runners. Disturbance favours clonal growth and leads to an increase in the number of ramets. Mechanical stem damage and fires also lead to increased clonal recruitment. The tree benefits from di-nitrogen fixation associated with symbiotic rhizobia in root nodules. Estimated symbiotic nitrogen fixation rates range widely from 23 to 300kgha(-1)year(-1). The nitrogen becomes available to other plants mainly by the rapid decay of nitrogen-rich leaves.Robinia pseudoacacia is host to a wide range of fungi both in the native and introduced ranges. Megaherbivores are of minor significance in Europe but browsing by ungulates occurs in the native range. Among insects, the North American black locust gall midge (Obolodiplosis robiniae) is specific to Robinia and is spreading rapidly throughout Europe. In parts of Europe, Robinia pseudoacacia is considered an invasive non-indigenous plant and the tree is controlled. Negative impacts include shading and changes of soil conditions as a result of nitrogen fixation.}, language = {en} } @article{DoyleVohlandRocketal.2007, author = {Doyle, U and Vohland, K and Rock, J and Schuemann, K and Ristow, Michael}, title = {Nachwachsende Rohstoffe : eine Einsch{\"a}tzung aus Sicht des Naturschutzes}, year = {2007}, language = {de} } @article{DuevelRistowScholz2001, author = {D{\"u}vel, Martina and Ristow, Michael and Scholz, Hildemar}, title = {Scolochloa marchica sp. nova : ein neues R{\"o}hrichtgras aus Mitteleuropa}, issn = {0014-8962}, year = {2001}, language = {de} } @article{FischerRistow2002, author = {Fischer, Wolfgang and Ristow, Michael}, title = {Bericht {\"u}ber die 31. Brandenburgische Botanikertagung vom 23. bis 26. Juni 2000 in Linowsee bei Rheinsberg}, year = {2002}, language = {de} } @article{GemeinholzerMayRistowetal.2012, author = {Gemeinholzer, B. and May, F. and Ristow, Michael and Batsch, C. and Lauterbach, D.}, title = {Strong genetic differentiation on a fragmentation gradient among populations of the heterocarpic annual Catananche lutea L. (Asteraceae)}, series = {Plant systematics and evolution}, volume = {298}, journal = {Plant systematics and evolution}, number = {8}, publisher = {Springer}, address = {Wien}, issn = {0378-2697}, doi = {10.1007/s00606-012-0661-1}, pages = {1585 -- 1596}, year = {2012}, abstract = {In landscapes which are predominately characterised by agriculture, natural ecosystems are often reduced to a mosaic of scattered patches of natural vegetation. Species with formerly connected distribution ranges now have restricted gene flow among populations. This has isolating effects upon population structure, because species are often confined by their limited dispersal capabilities. In this study, we test the effects of habitat fragmentation, precipitation, and isolation of populations on the genetic structure (AFLP) and fitness of the Asteraceae Catananche lutea. Our study area is an agro-dominated ecosystem in the desert-Mediterranean transition zone of the Southern Judea Lowlands in Israel. Our analysis revealed an intermediate level of intra-population genetic diversity across the study site with reduced genetic diversity on smaller scale. Although the size of the whole study area was relatively small (20 x 45 km), we found isolation by distance to be effective. We detected a high level of genetic differentiation among populations but genetic structure did not reflect spatial patterns. Population genetic diversity was correlated neither with position along the precipitation gradient nor with different seed types or other plant fitness variables in C. lutea.}, language = {en} } @misc{GiladiMayRistowetal.2014, author = {Giladi, Itamar and May, Felix and Ristow, Michael and Jeltsch, Florian and Ziv, Yaron}, title = {Scale-dependent species-area and species-isolation relationships: a review and a test study from a fragmented semi-arid agro-ecosystem}, series = {Journal of biogeography}, volume = {41}, journal = {Journal of biogeography}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.12299}, pages = {1055 -- 1069}, year = {2014}, abstract = {Aim Patterns that relate species richness with fragment area (the species-area relationship, SAR) and with isolation (the species-isolation relationship, SIR) are well documented. However, those that relate species density - the number of species within a standardized area - with fragment area (D-SAR) or isolation (D-SIR) have not been sufficiently explored, despite the potential for such an analysis to disentangle the underlying mechanisms of SARs and SIRs. Previous spatial theory predicts that a significant D-SAR or D-SIR is unlikely to emerge in taxa with high dispersal limitation, such as plants. Furthermore, a recent model predicts that the detection and the significance of D-SARs or D-SIRs may decrease with grain size. We combined a literature review with grain size-dependent sampling in a fragmented landscape to evaluate the prevalence and grain size-dependent nature of D-SARs and D-SIRs in plants. Location Worldwide (review) and a semi-arid agro-ecosystem in Israel (case study). Methods We combined an extensive literature review of 31 D-SAR studies of plants in fragmented landscapes with an empirical study in which we analysed grain size-dependent D-SARs and D-SIRs using a grain size-dependent hierarchical sampling of species density and species richness in a fragmented, semi-arid agro-ecosystem. Results We found that significantly increasing D-SARs are rare in plant studies. Furthermore, we found that the detection of a significant D-SAR is often possible only after the data have been stratified by species, habitat or landscape characteristics. The results from our case study indicated that the significance and the slopes of both D-SARs and D-SIRs increase as grain size decreases. Main conclusions These results call for a careful consideration of scale while analysing and interpreting the responses of species richness and species density to fragmentation. Our results suggest that grain size-dependent analyses of D-SARs and D-SIRs may help to disentangle the mechanisms that generate SARs and SIRs and may enable early detection of the effects of fragmentation on plant biodiversity.}, language = {en} } @article{GrothSeitzRistow2003, author = {Groth, Birgit and Seitz, Birgit and Ristow, Michael}, title = {Naturschutzfachlich geeignete Baum- und Straucharten f{\"u}r die Verwendung bei Kompensationsmaßnahmen in der freien Landschaft in Brandenburg}, year = {2003}, language = {de} } @article{HanspachRistow2005, author = {Hanspach, Dietrich and Ristow, Michael}, title = {Bericht {\"u}ber die 34. Brandenburgische Botanikertagung vom 20. bis 23. Juni 2003 in Ortrand}, year = {2005}, language = {de} } @article{HornHempelRistowetal.2015, author = {Horn, Sebastian and Hempel, Stefan and Ristow, Michael and Rillig, Matthias C. and Kowarik, Ingo and Caruso, Tancredi}, title = {Plant community assembly at small scales: Spatial vs. environmental factors in a European grassland}, series = {Acta oecologica : international journal of ecology}, volume = {63}, journal = {Acta oecologica : international journal of ecology}, publisher = {Elsevier}, address = {Paris}, issn = {1146-609X}, doi = {10.1016/j.actao.2015.01.004}, pages = {56 -- 62}, year = {2015}, abstract = {Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15 x 15, 12 x 12 and 12 x 12 m in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18\% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14\% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition. (C) 2015 Elsevier Masson SAS. All rights reserved.}, language = {en} } @article{LauterbachRistowGemeinholzer2012, author = {Lauterbach, Daniel and Ristow, Michael and Gemeinholzer, Birgit}, title = {Population genetics and fitness in fragmented populations of the dioecious and endangered Silene otites (Caryophyllaceae)}, series = {Plant systematics and evolution}, volume = {298}, journal = {Plant systematics and evolution}, number = {1}, publisher = {Springer}, address = {Wien}, issn = {0378-2697}, doi = {10.1007/s00606-011-0533-0}, pages = {155 -- 164}, year = {2012}, abstract = {Population fragmentation is often correlated with loss of genetic diversity and reduced fitness. Obligate out-crossing (dioecy) is expected to enhance genetic diversity, reduce genetic differentiation, and avoid inbreeding depression through frequent gene flow. However, in highly fragmented populations dioecy has only diminishing effects upon genetic structure as pollination limitations (e.g. flight distance of pollinators) most often restrict inter-population gene flow in insect pollinated species. In fragmented dry grasslands in northeastern Germany, we analysed genetic structure, fitness, and habitat quality of the endangered dioecious Silene otites (Caryophyllaceae). Using AFLP markers, a high level of differentiation among ten populations was found (F (st) = 0.36), while the intra-population genetic diversities (H (E) = 0.165-0.240) were similar as compared to hermaphroditic species. There was neither a correlation between geographic and genetic distance nor between genetic diversity and population size, which indicates reduced gene flow among populations and random genetic drift. Plant size was positively correlated with genetic diversity. Seed set and number of juveniles were positively related to population size. Higher total coverage resulted in reduced plant fitness, and the number of juveniles was negatively correlated to cryptogam cover. Additionally, we found a sex ratio bias towards more male plants in larger populations. Overall, our results indicate that on a regional geographic scale dioecy does not necessarily prevent genetic erosion in the case of habitat fragmentation, especially in the absence of long distance seed and pollen dispersal capacity.}, language = {en} } @article{LauterbachRistowGemeinholzer2011, author = {Lauterbach, Dirk and Ristow, Michael and Gemeinholzer, B.}, title = {Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae)}, series = {Plant biology}, volume = {13}, journal = {Plant biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/j.1438-8677.2010.00418.x}, pages = {667 -- 677}, year = {2011}, abstract = {Habitat fragmentation can lead to a decline of genetic diversity, a potential risk for the survival of natural populations. Fragmented populations can become highly differentiated due to reduced gene flow and genetic drift. A decline in number of individuals can result in lower reproductive fitness due to inbreeding effects. We investigated genetic variation within and between 11 populations of the rare and endangered plant Silene chlorantha in northeastern Germany to support conservation strategies. Genetic diversity was evaluated using AFLP techniques and the results were correlated to fitness traits. Fitness evaluation in nature and in a common garden approach was conducted. Our analysis revealed population differentiation was high and within population genetic diversity was intermediate. A clear population structure was supported by a Bayesian approach, AMOVA and neighbour-joining analysis. No correlation between genetic and geographic distance was found. Our results indicate that patterns of population differentiation were mainly caused by temporal and/or spatial isolation and genetic drift. The fitness evaluation revealed that pollinator limitation and habitat quality seem, at present, to be more important to reproductive fitness than genetic diversity by itself. Populations of S. chlorantha with low genetic diversity have the potential to increase in individual number if habitat conditions improve. This was detected in a single large population in the investigation area, which was formerly affected by bottleneck effects.}, language = {en} } @article{MachatziRatschPrasseetal.2005, author = {Machatzi, Bernd and Ratsch, Andreas and Prasse, R{\"u}diger and Ristow, Michael}, title = {Rote Liste und Gesamtartenliste der Heuschrecken und Grillen (Saltatoria: Ensifera et Caelifera) von Berlin}, isbn = {3-00016815-x}, year = {2005}, abstract = {This Red List of grasshoppers and crickets for Berlin is the first that treats the whole area of Berlin, since the two preceding lists focused only on the western parts of the formerly divided city. Until now 54 species of grasshoppers and crickets have been recorded in the area. 46 species have been found to be well established in the wild, while eight species were only non breeding accidental immigrants or species whose successful reproduction has only been observed in greenhouses or similar structures. Of the 46 species being well established in the past and/or present 22 must be included in one of the threat categories, indicating that the populations of these species are already endangered. Additionally, seven species belong to the category "Near Threatened". Only 17 of the grasshopper and cricket species of Berlin are not threatened.}, language = {de} }