@phdthesis{Sarlet2023, author = {Sarlet, Adrien}, title = {Tuning the viscoelasticity of Escherichia coli biofilms}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2023}, abstract = {Biofilms are heterogeneous structures made of microorganisms embedded in a self-secreted extracellular matrix. Recently, biofilms have been studied as sustainable living materials with a focus on the tuning of their mechanical properties. One way of doing so is to use metal ions. In particular biofilms have been shown to stiffen in presence of some metal cations and to soften in presence of others. However, the specificity and the determinants of those interactions vary between species. While Escherichia coli is a widely studied model organism, little is known concerning the response of its biofilms to metal ions. In this work, we aimed at tuning the mechanics of E. coli biofilms by acting on the interplay between matrix composition and metal cations. To do so, we worked with E. coli strains producing a matrix composed of curli amyloid fibres or phosphoethanolamine-cellulose (pEtN-cellulose) fibres or both. The viscoelastic behaviour of the resulting biofilms was investigated with rheology after incubation with one of the following metal ion solutions: FeCl3, AlCl3, ZnCl2 and CaCl2 or ultrapure water. We observed that the strain producing both fibres stiffen by a factor of two when exposed to the trivalent metal cations Al(III) and Fe(III) while no such response is observed for the bivalent cations Zn(II) and Ca(II). Strains producing only one matrix component did not show any stiffening in response to either cation, but even a small softening. In order to investigate further the contribution of each matrix component to the mechanical properties, we introduced additional bacterial strains producing curli fibres in combination with non-modified cellulose, non-modified cellulose only or neither component. We measured biofilms produced by those different strains with rheology and without any solution. Since rheology does not preserve the architecture of the matrix, we compared those results to the mechanical properties of biofilms probed with the non-destructive microindentation. The microindentation results showed that biofilm stiffness is mainly determined by the presence of curli amyloid fibres in the matrix. However, this clear distinction between biofilm matrices containing or not containing curli is absent from the rheology results, i.e. following partial destruction of the matrix architecture. In addition, rheology also indicated a negative impact of curli on biofilm yield stress and flow stress. This suggests that curli fibres are more brittle and therefore more affected by the mechanical treatments. Finally, to examine the molecular interactions between the biofilms and the metal cations, we used Attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) to study the three E.coli strains producing a matrix composed of curli amyloid fibres, pEtN-cellulose fibres or both. We measured biofilms produced by those strains in presence of each of the aforementioned metal cation solutions or ultrapure water. We showed that the three strains cannot be distinguished based on their FTIR spectra and that metal cations seem to have a non-specific effect on bacterial membranes in absence of pEtN-cellulose. We subsequently conducted similar experiments on purified curli or pEtN-cellulose fibres. The spectra of the pEtN-cellulose fibres revealed a non-valence-specific interaction between metal cations and the phosphate of the pEtN-modification. Altogether, these results demonstrate that the mechanical properties of E. coli biofilms can be tuned via incubation with metal ions. While the mechanism involving curli fibres remains to be determined, metal cations seem to adsorb onto pEtN-cellulose and this is not valence-specific. This work also underlines the importance of matrix architecture to biofilm mechanics and emphasises the specificity of each matrix composition.}, language = {en} } @misc{GoychukKharchenko2013, author = {Goychuk, Igor and Kharchenko, Vasyl O.}, title = {Rocking subdiffusive ratchets}, series = {Mathematical Modelling of Natural Phenomena}, journal = {Mathematical Modelling of Natural Phenomena}, number = {622}, issn = {1866-8372}, doi = {10.1051/mmnp/20138210}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416138}, pages = {15}, year = {2013}, abstract = {We study origin, parameter optimization, and thermodynamic efficiency of isothermal rocking ratchets based on fractional subdiffusion within a generalized non-Markovian Langevin equation approach. A corresponding multi-dimensional Markovian embedding dynamics is realized using a set of auxiliary Brownian particles elastically coupled to the central Brownian particle (see video on the journal web site). We show that anomalous subdiffusive transport emerges due to an interplay of nonlinear response and viscoelastic effects for fractional Brownian motion in periodic potentials with broken space-inversion symmetry and driven by a time-periodic field. The anomalous transport becomes optimal for a subthreshold driving when the driving period matches a characteristic time scale of interwell transitions. It can also be optimized by varying temperature, amplitude of periodic potential and driving strength. The useful work done against a load shows a parabolic dependence on the load strength. It grows sublinearly with time and the corresponding thermodynamic efficiency decays algebraically in time because the energy supplied by the driving field scales with time linearly. However, it compares well with the efficiency of normal diffusion rocking ratchets on an appreciably long time scale.}, language = {en} } @article{GoychukKharchenko2013, author = {Goychuk, I. and Kharchenko, V. O.}, title = {Rocking subdiffusive ratchets origin, optimization and efficiency}, series = {Mathematical modelling of natural phenomena}, volume = {8}, journal = {Mathematical modelling of natural phenomena}, number = {2}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0973-5348}, doi = {10.1051/mmnp/20138210}, pages = {144 -- 158}, year = {2013}, abstract = {We study origin, parameter optimization, and thermodynamic efficiency of isothermal rocking ratchets based on fractional subdiffusion within a generalized non-Markovian Langevin equation approach. A corresponding multi-dimensional Markovian embedding dynamics is realized using a set of auxiliary Brownian particles elastically coupled to the central Brownian particle (see video on the journal web site). We show that anomalous subdiffusive transport emerges due to an interplay of nonlinear response and viscoelastic effects for fractional Brownian motion in periodic potentials with broken space-inversion symmetry and driven by a time-periodic field. The anomalous transport becomes optimal for a subthreshold driving when the driving period matches a characteristic time scale of interwell transitions. It can also be optimized by varying temperature, amplitude of periodic potential and driving strength. The useful work done against a load shows a parabolic dependence on the load strength. It grows sublinearly with time and the corresponding thermodynamic efficiency decays algebraically in time because the energy supplied by the driving field scales with time linearly. However, it compares well with the efficiency of normal diffusion rocking ratchets on an appreciably long time scale.}, language = {en} } @phdthesis{Leiendecker2016, author = {Leiendecker, Mai-Thi}, title = {Physikalische Hydrogele auf Polyurethan-Basis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103917}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2016}, abstract = {Physical hydrogels have gained recent attention as cell substrates, since viscoelasticity or stress relaxation is a powerful parameter in mechanotransduction, which has long been neglected. We designed multi-functional polyurethanes to form physical hydrogels via a unique tunable gelation mechanism. The anionic polyurethanes spontaneously form aggregates in water that are kept in a soluble state through electrostatic repulsion. Fast subsequent gelation can be triggered by charge shielding which allows the aggregation and network building to proceed. This can be induced by adding either acids or salts, resulting in acidic (pH 4-5) or pH-neutral hydrogels, respectively. Whereas conventional polyurethane-based hydrogels are commonly prepared from toxic isocyanate precursors, the physical hydrogelation mechanism described here does not involve chemically reactive species which is ideal for in situ applications in sensitive environments. Both stiffness and stress relaxation can be tuned independently over a broad range and the gels exhibit excellent stress recovery behavior.}, language = {de} }