@article{KangLimOhetal.2017, author = {Kang, Mi-Sun and Lim, Hae-Soon and Oh, Jong-Suk and Lim, You-jin and Wuertz-Kozak, Karin and Harro, Janette M. and Shirtliff, Mark E. and Achermann, Yvonne}, title = {Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus}, series = {Pathogens and disease / Federation of European Microbiology Societies}, volume = {75}, journal = {Pathogens and disease / Federation of European Microbiology Societies}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2049-632X}, doi = {10.1093/femspd/ftx009}, pages = {10}, year = {2017}, abstract = {The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms.}, language = {en} } @article{MrochenSchulzFischeretal.2018, author = {Mrochen, Daniel M. and Schulz, Daniel and Fischer, Stefan and Jeske, Kathrin and El Gohary, Heba and Reil, Daniela and Imholt, Christian and Truebe, Patricia and Suchomel, Josef and Tricaud, Emilie and Jacob, Jens and Heroldova, Marta and Br{\"o}ker, Barbara M. and Strommenger, Birgit and Walther, Birgit and Ulrich, Rainer G. and Holtfreter, Silva}, title = {Wild rodents and shrews are natural hosts of Staphylococcus aureus}, series = {International Journal of Medical Microbiology}, volume = {308}, journal = {International Journal of Medical Microbiology}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1438-4221}, doi = {10.1016/j.ijmm.2017.09.014}, pages = {590 -- 597}, year = {2018}, abstract = {Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012-2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3\%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4\%), followed by CC1956 (14/48, 29.2\%) and ST890 (9/48, 18.8\%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant. In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation.}, language = {en} } @article{SeitzSchumacherBakeretal.2019, author = {Seitz, Aaron P. and Schumacher, Fabian and Baker, Jennifer and Soddemann, Matthias and Wilker, Barbara and Caldwell, Charles C. and Gobble, Ryan M. and Kamler, Markus and Becker, Katrin Anne and Beck, Sascha and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich}, title = {Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia}, series = {Journal of molecular medicine}, volume = {97}, journal = {Journal of molecular medicine}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {0946-2716}, doi = {10.1007/s00109-019-01800-1}, pages = {1195 -- 1211}, year = {2019}, abstract = {Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP.Key messagesNovel dip-coating method to coat plastic surfaces with lipids.Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface.Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms.Sphingosine coatings of endotracheal tubes induce killing of pathogens.Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia.}, language = {en} } @article{BarazaNeserJacksonetal.2016, author = {Baraza, Lilechi D. and Neser, Wekesa and Jackson, Korir Cheruiyot and Fredrick, Juma B. and Dennis, Ochieno and Wairimu, Kamau R. and Keya, Aggrey Osogo and Heydenreich, Matthias}, title = {Antimicrobial Coumarins from the Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes), from Kenya}, series = {International journal of medicinal mushrooms}, volume = {18}, journal = {International journal of medicinal mushrooms}, publisher = {Begell House}, address = {Danbury}, issn = {1521-9437}, doi = {10.1615/IntJMedMushrooms.v18.i10.60}, pages = {905 -- 913}, year = {2016}, abstract = {Pleurotus ostreatus has been widely used as food because of its nutritional and medicinal properties. These have been attributed to the presence of macronutrients, minerals, vitamins, and amino acids, among other secondary metabolites. There are, however, few reports on the antimicrobial activities of different classes of purified compounds from P. ostreatus. This led to the current study, the objective of which was to chemically characterize the antibiotic activities of P. ()streams against selected human pathogenic bacteria and endophytic fungi. Chemical structures were determined using spectroscopic methods and by comparison with values of related structures reported in the literature. Pure compounds from P. ostreatus were tested in vitro against pathogenic bacteria (Staphylococcus aureus and Escherichia coli) and endophytic fungi (Pencillium digitatum and Fusarium prolferatum). A new compound, (E)-5,7-dimethoxy-6-(3-methylbuta-1,3-dienyl)-2H-chromen-2-one (5-methoxy-(E)-suberodiene) (compound 2), along with ergosterol (compound I.) and 5,7-dimethoxy-6-(3-methylbut-2-enyl)-2H-chromen-2-one (toddaculin; compound 3), were isolated from the fruiting bodies of P. ostreatus. The growth of S. aureus,E proliferatum, and P. digitatum colonies was inhibited in media containing compound 2, with minimum inhibitory concentrations closely comparable to those of conventional antibiotics.}, language = {en} }