@phdthesis{Mancini2021, author = {Mancini, Carola}, title = {Analysis of the effects of age-related changes of metabolic flux on brown adipocyte formation and function}, doi = {10.25932/publishup-51266}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 134}, year = {2021}, abstract = {Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, thereby allowing mammals to maintain a constant body temperature in a cold environment. Thermogenic capacity of this tissue is due to a high mitochondrial density and expression of uncoupling protein 1 (UCP1), a unique brown adipocyte marker which dissipates the mitochondrial proton gradient to produce heat instead of ATP. BAT is actively involved in whole-body metabolic homeostasis and during aging there is a loss of classical brown adipose tissue with concomitantly reduced browning capacity of white adipose tissue. Therefore, an age-dependent decrease of BAT-related energy expenditure capacity may exacerbate the development of metabolic diseases, including obesity and type 2 diabetes mellitus. Given that direct effects of age-related changes of BAT-metabolic flux have yet to be unraveled, the aim of the current thesis is to investigate potential metabolic mechanisms involved in BAT-dysfunction during aging and to identify suitable metabolic candidates as functional biomarkers of BAT-aging. To this aim, integration of transcriptomic, metabolomic and proteomic data analyses of BAT from young and aged mice was performed, and a group of candidates with age-related changes was revealed. Metabolomic analysis showed age-dependent alterations of metabolic intermediates involved in energy, nucleotide and vitamin metabolism, with major alterations regarding the purine nucleotide pool. These data suggest a potential role of nucleotide intermediates in age-related BAT defects. In addition, the screening of transcriptomic and proteomic data sets from BAT of young and aged mice allowed identification of a 60-kDa lysophospholipase, also known as L-asparaginase (Aspg), whose expression declines during BAT-aging. Involvement of Aspg in brown adipocyte thermogenic function was subsequently analyzed at the molecular level using in vitro approaches and animal models. The findings revealed sensitivity of Aspg expression to β3-adrenergic activation via different metabolic cues, including cold exposure and treatment with β3-adrenergic agonist CL. To further examine ASPG function in BAT, an over-expression model of Aspg in a brown adipocyte cell line was established and showed that these cells were metabolically more active compared to controls, revealing increased expression of the main brown-adipocyte specific marker UCP1, as well as higher lipolysis rates. An in vitro loss-of-function model of Aspg was also functionally analyzed, revealing reduced brown adipogenic characteristics and an impaired lipolysis, thus confirming physiological relevance of Aspg in brown adipocyte function. Characterization of a transgenic mouse model with whole-body inactivation of the Aspg gene (Aspg-KO) allowed investigation of the role of ASPG under in vivo conditions, indicating a mild obesogenic phenotype, hypertrophic white adipocytes, impairment of the early thermogenic response upon cold-stimulation and dysfunctional insulin sensitivity. Taken together, these data show that ASPG may represent a new functional biomarker of BAT-aging that regulates thermogenesis and therefore a potential target for the treatment of age-related metabolic disease.}, language = {en} } @phdthesis{Hauffe2021, author = {Hauffe, Robert}, title = {Investigating metabolic consequences of an HSP60 reduction during diet-induced obesity}, doi = {10.25932/publishup-50929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509294}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 116}, year = {2021}, abstract = {The mitochondrial chaperone complex HSP60/HSP10 facilitates mitochondrial protein homeostasis by folding more than 300 mitochondrial matrix proteins. It has been shown previously that HSP60 is downregulated in brains of type 2 diabetic (T2D) mice and patients, causing mitochondrial dysfunction and insulin resistance. As HSP60 is also decreased in peripheral tissues in T2D animals, this thesis investigated the effect of overall reduced HSP60 in the development of obesity and associated co-morbidities. To this end, both female and male C57Bl/6N control (i.e. without further alterations in their genome, Ctrl) and heterozygous whole-body Hsp60 knock-out (Hsp60+/-) mice, which exhibit a 50 \% reduction of HSP60 in all tissues, were fed a normal chow diet (NCD) or a highfat diet (HFD, 60 \% calories from fat) for 16 weeks and were subjected to extensive metabolic phenotyping including indirect calorimetry, NMR spectroscopy, insulin, glucose and pyruvate tolerance tests, vena cava insulin injections, as well as histological and molecular analysis. Interestingly, NCD feeding did not result in any striking phenotype, only a mild increase in energy expenditure in Hsp60+/- mice. Exposing mice to a HFD however revealed an increased body weight due to higher muscle mass in female Hsp60+/- mice, with a simultaneous decrease in energy expenditure. Additionally, these mice displayed decreased fasting glycemia. Opposingly, male Hsp60+/- compared to control mice showed lower body weight gain due to decreased fat mass and an increased energy expenditure, strikingly independent of lean mass. Further, only male Hsp60+/- mice display improved HOMA-IR and Matsuda insulin sensitivity indices. Despite the opposite phenotype in regards to body weight development, Hsp60+/- mice of both sexes show a significantly higher cell number, as well as a reduction in adipocyte size in the subcutaneous and gonadal white adipose tissue (sc/gWAT). Curiously, this adipocyte hyperplasia - usually associated with positive aspects of WAT function - is disconnected from metabolic improvements, as the gWAT of male Hsp60+/- mice shows mitochondrial dysfunction, oxidative stress, and insulin resistance. Transcriptomic analysis of gWAT shows an up regulation of genes involved in macroautophagy. Confirmatory, expression of microtubuleassociated protein 1A/1B light chain 3B (LC3), as a protein marker of autophagy, and direct measurement of lysosomal activity is increased in the gWAT of male Hsp60+/- mice. In summary, this thesis revealed a novel gene-nutrient interaction. The reduction of the crucial chaperone HSP60 did not have large effects in mice fed a NCD, but impacted metabolism during DIO in a sex-specific manner, where, despite opposing body weight and body composition phenotypes, both female and male Hsp60+/- mice show signs of protection from high fat diet-induced systemic insulin resistance.}, language = {en} }