@article{KamedaZvickVuketal.2019, author = {Kameda, Takuya and Zvick, Joel and Vuk, Miriam and Sadowska, Aleksandra and Tam, Wai Kit and Leung, Victor Y. and B{\"o}lcskei, Kata and Helyes, Zsuzsanna and Applegate, Lee Ann and Hausmann, Oliver N. and Klasen, Juergen and Krupkova, Olga and W{\"u}rtz-Kozak, Karin}, title = {Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc}, series = {International journal of molecular sciences}, volume = {20}, journal = {International journal of molecular sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms20071767}, pages = {23}, year = {2019}, abstract = {Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1) or tumor necrosis factor alpha (TNF-) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 mu M), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20\% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 mu M AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.}, language = {en} } @article{SadowskaTouliHitzletal.2017, author = {Sadowska, Aleksandra and Touli, Ermioni and Hitzl, Wolfgang and Greutert, Helen and Ferguson, Stephen J. and W{\"u}rtz-Kozak, Karin and Hausmann, Oliver N.}, title = {Inflammaging in cervical and lumbar degenerated intervertebral discs}, series = {European Spine Journal}, volume = {27}, journal = {European Spine Journal}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0940-6719}, doi = {10.1007/s00586-017-5360-8}, pages = {564 -- 577}, year = {2017}, abstract = {To investigate and compare the occurrence of inflammatory processes in the sites of disc degeneration in the lumbar and cervical spine by a gene array and subsequent qPCR and to investigate the mechanistic involvement of transient receptor potential channels TRPC6 and TRPV4. The gene expression of inflammatory cytokines and TRP channels was measured in human disc samples obtained from patients undergoing discectomy at the cervical (n = 24) or lumbar (n = 27) spine for degenerative disc disease (DDD) and disc herniation (DH) and analyzed for differences with regard to spinal level, IVD degeneration grade, Modic grade, age, sex, disc region and surgical extent. Aside from genes with known implication in DDD and DH, four previously unreported genes from the interferon and TRP families (IFNA1, IFNA8, IFNB1, TRPC6) could be detected. A correlation between gene expression and age (IL-15) and IVD degeneration grade (IFNA1, IL-6, IL-15, TRPC6), but not Modic grade, was identified. Significant differences were detected between cervical and lumbar discs (IL-15), nucleus and annulus (IL-6, TNF-alpha, TRPC6), single-level and multi-level surgery (IL-6, IL-8) as well as DDD and DH (IL-8), while sex had no effect. Multiple gene-gene pair correlations, either between different cytokines or between cytokines and TRP channels, exist in the disc. This study supports the relevance of IL-6 and IL-8 in disc diseases, but furthermore points toward a possible pathological role of IL-15 and type I interferons, as well as a mechanistic role of TRPC6. With limited differences in the inflammatory profile of cervical and lumbar discs, novel anti-inflammatory or TRP-modulatory strategies for the treatment of disc pathologies may be applicable independent of the spinal region.}, language = {en} } @misc{SadowskaHausmannWuertzKozak2018, author = {Sadowska, Aleksandra and Hausmann, Oliver Nic and Wuertz-Kozak, Karin}, title = {Inflammaging in the intervertebral disc}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {519}, doi = {10.25932/publishup-41408}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414081}, pages = {9}, year = {2018}, abstract = {Degeneration of the intervertebral disc - triggered by ageing, mechanical stress, traumatic injury, infection, inflammation and other factors - has a significant role in the development of low back pain. Back pain not only has a high prevalence, but also a major socio-economic impact. With the ageing population, its occurrence and costs are expected to grow even more in the future. Disc degeneration is characterized by matrix breakdown, loss in proteoglycans and thus water content, disc height loss and an increase in inflammatory molecules. The accumulation of cytokines, such as interleukin (IL)-1 , IL-8 or tumor necrosis factor (TNF)-, together with age-related immune deficiency, leads to the so-called inflammaging - low-grade, chronic inflammation with a crucial role in pain development. Despite the relevance of these molecular processes, current therapies target symptoms, but not underlying causes. This review describes the biological and biomechanical changes that occur in a degenerated disc, discusses the connection between disc degeneration and inflammaging, highlights factors that enhance the inflammatory processes in disc pathologies and suggests future research avenues.}, language = {en} } @article{SadowskaKamedaKrupkovaetal.2018, author = {Sadowska, Aleksandra and Kameda, Takuya and Krupkova, Olga and Wuertz-Kozak, Karin}, title = {Osmosensing, osmosignalling and inflammation}, series = {European cells \& materials}, volume = {36}, journal = {European cells \& materials}, publisher = {Ao research institute davos-Ari}, address = {Davos}, issn = {1473-2262}, doi = {10.22203/eCM.v036a17}, pages = {231 -- 250}, year = {2018}, abstract = {Intervertebral disc (IVD) cells are naturally exposed to high osmolarity and complex mechanical loading, which drive microenvironmental osmotic changes. Age- and degeneration-induced degradation of the IVD's extracellular matrix causes osmotic imbalance, which, together with an altered function of cellular receptors and signalling pathways, instigates local osmotic stress. Cellular responses to osmotic stress include osmoadaptation and activation of pro-inflammatory pathways. This review summarises the current knowledge on how IVD cells sense local osmotic changes and translate these signals into physiological or pathophysiological responses, with a focus on inflammation. Furthermore, it discusses the expression and function of putative membrane osmosensors (e.g. solute carrier transporters, transient receptor potential channels, aquaporins and acid-sensing ion channels) and osmosignalling mediators [e.g. tonicity response-element-binding protein/nuclear factor of activated T-cells 5 (TonEBP/NFAT5), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)] in healthy and degenerated IVDs. Finally, an overview of the potential therapeutic targets for modifying osmosensing and osmosignalling in degenerated IVDs is provided.}, language = {en} } @misc{SadowskaKamedaKrupkovaetal.2018, author = {Sadowska, Aleksandra and Kameda, Takuya and Krupkova, Olga and W{\"u}rtz-Kozak, Karin}, title = {Osmosensing, osmosignalling and inflammation}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {693}, issn = {1866-8364}, doi = {10.25932/publishup-46908}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469080}, pages = {22}, year = {2018}, abstract = {Intervertebral disc (IVD) cells are naturally exposed to high osmolarity and complex mechanical loading, which drive microenvironmental osmotic changes. Age- and degeneration-induced degradation of the IVD's extracellular matrix causes osmotic imbalance, which, together with an altered function of cellular receptors and signalling pathways, instigates local osmotic stress. Cellular responses to osmotic stress include osmoadaptation and activation of pro-inflammatory pathways. This review summarises the current knowledge on how IVD cells sense local osmotic changes and translate these signals into physiological or pathophysiological responses, with a focus on inflammation. Furthermore, it discusses the expression and function of putative membrane osmosensors (e.g. solute carrier transporters, transient receptor potential channels, aquaporins and acid-sensing ion channels) and osmosignalling mediators [e.g. tonicity responseelement-binding protein/nuclear factor of activated T-cells 5 (TonEBP/NFAT5), nuclear factor kappa-lightchain-enhancer of activated B cells (NF-kappa B)] in healthy and degenerated IVDs. Finally, an overview of the potential therapeutic targets for modifying osmosensing and osmosignalling in degenerated IVDs is provided.}, language = {en} } @misc{KrupkovaSadowskaKamedaetal.2018, author = {Krupkova, Olga and Sadowska, Aleksandra and Kameda, Takuya and Hitzl, Wolfgang and Hausmann, Oliver Nic and Klasen, J{\"u}rgen and Wuertz-Kozak, Karin}, title = {p38 MaPK facilitates crosstalk between endoplasmic reticulum stress and IL-6 release in the intervertebral Disc}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {705}, issn = {1866-8364}, doi = {10.25932/publishup-46869}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468698}, pages = {16}, year = {2018}, abstract = {Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1 beta, and TNF-alpha was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1 beta and TNF-alpha. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 mu M) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-alpha (5 and 10 ng/mL) did not activate ER stress, while IL-1 beta (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+](i) flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD.}, language = {en} } @article{KrupkovaSadowskaKamedaetal.2018, author = {Krupkova, Olga and Sadowska, Aleksandra and Kameda, Takuya and Hitzl, Wolfgang and Hausmann, Oliver Nic and Klasen, J{\"u}rgen and Wuertz-Kozak, Karin}, title = {p38 MaPK Facilitates crosstalk Between endoplasmic reticulum stress and IL-6 release in the intervertebral Disc}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.01706}, pages = {14}, year = {2018}, abstract = {Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1 beta, and TNF-alpha was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1 beta and TNF-alpha. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 mu M) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-alpha (5 and 10 ng/mL) did not activate ER stress, while IL-1 beta (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+](i) flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD.}, language = {en} }