@article{CasertaZhangYarmanetal.2021, author = {Caserta, Giorgio and Zhang, Xiaorong and Yarman, Aysu and Supala, Eszter and Wollenberger, Ulla and Gyurcs{\´a}nyi, R{\´o}bert E. and Zebger, Ingo and Scheller, Frieder W.}, title = {Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms}, series = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, volume = {381}, journal = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0013-4686}, doi = {10.1016/j.electacta.2021.138236}, pages = {8}, year = {2021}, abstract = {Molecularly imprinted polymer (MIP) nanofilms have been successfully implemented for the recognition of different target molecules: however, the underlying mechanistic details remained vague. This paper provides new insights in the preparation and binding mechanism of electrosynthesized peptide-imprinted polymer nanofilms for selective recognition of the terminal pentapeptides of the beta-chains of human adult hemoglobin, HbA, and its glycated form HbA1c. To differentiate between peptides differing solely in a glucose adduct MIP nanofilms were prepared by a two-step hierarchical electrosynthesis that involves first the chemisorption of a cysteinyl derivative of the pentapeptide followed by electropolymerization of scopoletin. This approach was compared with a random single-step electrosynthesis using scopo-letin/pentapeptide mixtures. Electrochemical monitoring of the peptide binding to the MIP nanofilms by means of redox probe gating revealed a superior affinity of the hierarchical approach with a Kd value of 64.6 nM towards the related target. Changes in the electrosynthesized non-imprinted polymer and MIP nanofilms during chemical, electrochemical template removal and rebinding were substantiated in situ by monitoring the characteristic bands of both target peptides and polymer with surface enhanced infrared absorption spectroscopy. This rational approach led to MIPs with excellent selectivity and provided key mechanistic insights with respect to electrosynthesis, rebinding and stability of the formed MIPs.}, language = {en} } @article{YanFrokjarEngelbrektetal.2021, author = {Yan, Jiawei and Fr{\o}kj{\ae}r, Emil Egede and Engelbrekt, Christian and Leimk{\"u}hler, Silke and Ulstrup, Jens and Wollenberger, Ulla and Xiao, Xinxin and Zhang, Jingdong}, title = {Voltammetry and single-molecule in situ scanning tunnelling microscopy of the redox metalloenzyme human sulfite oxidase}, series = {ChemElectroChem}, volume = {8}, journal = {ChemElectroChem}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.202001258}, pages = {164 -- 171}, year = {2021}, abstract = {Human sulfite oxidase (hSO) is a homodimeric two-domain enzyme central in the biological sulfur cycle. A pyranopterin molybdenum cofactor (Moco) is the catalytic site and a heme b(5) group located in the N-terminal domain. The two domains are connected by a flexible linker region. Electrons produced at the Moco in sulfite oxidation, are relayed via heme b(5) to electron acceptors or an electrode surface. Inter-domain conformational changes between an open and a closed enzyme conformation, allowing "gated" electron transfer has been suggested. We first recorded cyclic voltammetry (CV) of hSO on single-crystal Au(111)-electrode surfaces modified by self-assembled monolayers (SAMs) both of a short rigid thiol, cysteamine and of a longer structurally flexible thiol, omega-amino-octanethiol (AOT). hSO on cysteamine SAMs displays a well-defined pair of voltammetric peaks around -0.207 V vs. SCE in the absence of sulfite substrate, but no electrocatalysis. hSO on AOT SAMs displays well-defined electrocatalysis, but only "fair" quality voltammetry in the absence of sulfite. We recorded next in situ scanning tunnelling spectroscopy (STS) of hSO on AOT modified Au(111)-electrodes, disclosing, a 2-5 \% surface coverage of strong molecular scale contrasts, assigned to single hSO molecules, notably with no contrast difference in the absence and presence of sulfite. In situ STS corroborated this observation with a sigmoidal tunnelling current/overpotential correlation.}, language = {en} } @article{TadjoungWaffoMitrovaTiedemannetal.2021, author = {Tadjoung Waffo, Armel Franklin and Mitrova, Biljana and Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrochemical trimethylamine n-oxide biosensor with enzyme-based oxygen-scavenging membrane for long-term operation under ambient air}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11040098}, pages = {17}, year = {2021}, abstract = {An amperometric trimethylamine N-oxide (TMAO) biosensor is reported, where TMAO reductase (TorA) and glucose oxidase (GOD) and catalase (Cat) were immobilized on the electrode surface, enabling measurements of mediated enzymatic TMAO reduction at low potential under ambient air conditions. The oxygen anti-interference membrane composed of GOD, Cat and polyvinyl alcohol (PVA) hydrogel, together with glucose concentration, was optimized until the O-2 reduction current of a Clark-type electrode was completely suppressed for at least 3 h. For the preparation of the TMAO biosensor, Escherichia coli TorA was purified under anaerobic conditions and immobilized on the surface of a carbon electrode and covered by the optimized O-2 scavenging membrane. The TMAO sensor operates at a potential of -0.8 V vs. Ag/AgCl (1 M KCl), where the reduction of methylviologen (MV) is recorded. The sensor signal depends linearly on TMAO concentrations between 2 mu M and 15 mM, with a sensitivity of 2.75 +/- 1.7 mu A/mM. The developed biosensor is characterized by a response time of about 33 s and an operational stability over 3 weeks. Furthermore, measurements of TMAO concentration were performed in 10\% human serum, where the lowest detectable concentration is of 10 mu M TMAO.}, language = {en} } @article{ZhangCasertaYarmanetal.2021, author = {Zhang, Xiaorong and Caserta, Giorgio and Yarman, Aysu and Supala, Eszter and Tadjoung Waffo, Armel Franklin and Wollenberger, Ulla and Gyurcsanyi, Robert E. and Zebger, Ingo and Scheller, Frieder W.}, title = {"Out of Pocket" protein binding}, series = {Chemosensors}, volume = {9}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors9060128}, pages = {13}, year = {2021}, abstract = {The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides.}, language = {en} } @article{OthmanWollenberger2020, author = {Othman, Abdelmageed M. and Wollenberger, Ulla}, title = {Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection}, series = {International journal of biological macromolecules}, volume = {153}, journal = {International journal of biological macromolecules}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0141-8130}, doi = {10.1016/j.ijbiomac.2020.03.049}, pages = {855 -- 864}, year = {2020}, abstract = {A biosensor for phenolic compounds based on a chemically modified laccase from Coriolus hirsula immobilized on functionalized screen-printed carbon electrodes (SPCEs) was achieved. Different enzyme modifications and immobilization strategies were analyzed. The electrochemical response of the immobilized laccase on SPCEs modified with carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNT) was the highest when laccase was aminated prior to the adsorption onto the working electrode. The developed lactase biosensor sensitivity toward different phenolic compounds was assessed to determine the biosensor response with several phenolic compounds. The highest response was obtained for ABTS with a saturation value of I-max = 27.94 mu A. The electrocatalytic efficiency (I-max/K-m(app)) was the highest for ABTS (5588 mu A mu M-1) followed by syringaldazine (3014 mu A.mu M-1). The sensors were considerably stable, whereby 99.5, 82 and 77\% of the catalytic response using catechol as substrate was retained after 4, 8 and 10 successive cycles of reuse respectively, with response time average of 5 s for 12 cycles. No loss of activity was observed after 20 days of storage.}, language = {en} } @article{NeumannWollenberger2020, author = {Neumann, Bettina and Wollenberger, Ulla}, title = {Electrochemical biosensors employing natural and artificial heme peroxidases on semiconductors}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20133692}, pages = {24}, year = {2020}, abstract = {Heme peroxidases are widely used as biological recognition elements in electrochemical biosensors for hydrogen peroxide and phenolic compounds. Various nature-derived and fully synthetic heme peroxidase mimics have been designed and their potential for replacing the natural enzymes in biosensors has been investigated. The use of semiconducting materials as transducers can thereby offer new opportunities with respect to catalyst immobilization, reaction stimulation, or read-out. This review focuses on approaches for the construction of electrochemical biosensors employing natural heme peroxidases as well as various mimics immobilized on semiconducting electrode surfaces. It will outline important advances made so far as well as the novel applications resulting thereof.}, language = {en} } @article{NeumannKielbRustametal.2017, author = {Neumann, Bettina and Kielb, Patrycja and Rustam, Lina and Fischer, Anna and Weidinger, Inez M. and Wollenberger, Ulla}, title = {Bioelectrocatalytic Reduction of Hydrogen Peroxide by Microperoxidase-11 Immobilized on Mesoporous Antimony-Doped Tin Oxide}, series = {ChemElectrChem}, volume = {4}, journal = {ChemElectrChem}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201600776}, pages = {913 -- 919}, year = {2017}, abstract = {The heme-undecapeptide microperoxidase-11 (MP-11) was immobilized on mesoporous antimony-doped tin oxide (ATO) thin-film electrodes modified with the positively charged binding promotor polydiallyldimethylammonium chloride. Surface concentrations of MP-11 of 1.5 nmol cm(-2) were sufficiently high to enable spectroelectrochemical analyses. UV/Vis spectroscopy and resonance Raman spectroscopy revealed that immobilized MP-11 adopts a six-coordinated low-spin conformation, as in solution in the presence of a polycation. Cathodic reduction of hydrogen peroxide at potentials close to +500mV versus Ag/AgCl indicates that the reaction proceeds via a Compound I-type like intermediate, analogous to natural peroxidases, and confirms mesoporous ATO as a suitable host material for adsorbing the heme-peptide in its native state. A hydrogen peroxide sensor is proposed by using the bioelectrocatalytic properties of the MP-11-modified ATO.}, language = {en} } @misc{YarmanJetzschmannNeumannetal.2017, author = {Yarman, Aysu and Jetzschmann, Katharina J. and Neumann, Bettina and Zhang, Xiaorong and Wollenberger, Ulla and Cordin, Aude and Haupt, Karsten and Scheller, Frieder W.}, title = {Enzymes as Tools in MIP-Sensors}, series = {Chemosensors}, volume = {5}, journal = {Chemosensors}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors5020011}, pages = {16}, year = {2017}, abstract = {Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as tracers for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences.}, language = {en} } @misc{YarmanKurbanogluJetzschmannetal.2018, author = {Yarman, Aysu and Kurbanoglu, Sevinc and Jetzschmann, Katharina J. and Ozkan, Sibel A. and Wollenberger, Ulla and Scheller, Frieder W.}, title = {Electrochemical MIP-Sensors for Drugs}, series = {Current Medicinal Chemistry}, volume = {25}, journal = {Current Medicinal Chemistry}, number = {33}, publisher = {Bentham Science Publishers LTD}, address = {Sharjah}, issn = {0929-8673}, doi = {10.2174/0929867324666171005103712}, pages = {4007 -- 4019}, year = {2018}, abstract = {In order to replace bio-macromolecules by stable synthetic materials in separation techniques and bioanalysis biomimetic receptors and catalysts have been developed: Functional monomers are polymerized together with the target analyte and after template removal cavities are formed in the "molecularly imprinted polymer" (MIP) which resemble the active sites of antibodies and enzymes. Starting almost 80 years ago, around 1,100 papers on MIPs were published in 2016. Electropolymerization allows to deposit MIPs directly on voltammetric electrodes or chips for quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). For the readout of MIPs for drugs amperometry, differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) offer higher sensitivity as compared with QCM or SPR. Application of simple electrochemical devices allows both the reproducible preparation of MIP sensors, but also the sensitive signal generation. Electrochemical MIP-sensors for the whole arsenal of drugs, e.g. the most frequently used analgesics, antibiotics and anticancer drugs have been presented in literature and tested under laboratory conditions. These biomimetic sensors typically have measuring ranges covering the lower nano-up to millimolar concentration range and they are stable under extreme pH and in organic solvents like nonaqueous extracts.}, language = {en} } @article{KaufmannDuffusMitrovaetal.2018, author = {Kaufmann, Hans Paul and Duffus, Benjamin R. and Mitrova, Biljana and Iobbi-Nivol, Chantal and Teutloff, Christian and Nimtz, Manfred and Jaensch, Lothar and Wollenberger, Ulla and Leimk{\"u}hler, Silke}, title = {Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamie N-Oxide Reductase}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.7b01108}, pages = {1130 -- 1143}, year = {2018}, abstract = {The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.}, language = {en} } @article{JetzschmannYarmanRustametal.2018, author = {Jetzschmann, Katharina J. and Yarman, Aysu and Rustam, L. and Kielb, P. and Urlacher, V. B. and Fischer, A. and Weidinger, I. M. and Wollenberger, Ulla and Scheller, Frieder W.}, title = {Molecular LEGO by domain-imprinting of cytochrome P450 BM3}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {164}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2018.01.047}, pages = {240 -- 246}, year = {2018}, abstract = {Hypothesis: Electrosynthesis of the MIP nano-film after binding of the separated domains or holocytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Experiments: Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). Findings: The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the hiss-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The hiss-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode.}, language = {en} } @article{ZhangYarmanErdossyetal.2018, author = {Zhang, Xiaorong and Yarman, Aysu and Erdossy, Julia and Katz, Sagie and Zebger, Ingo and Jetzschmann, Katharina J. and Altintas, Zeynep and Wollenberger, Ulla and Gyurcsanyi, Robert E. and Scheller, Frieder W.}, title = {Electrosynthesized MIPs for transferrin}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {105}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.01.011}, pages = {29 -- 35}, year = {2018}, abstract = {Molecularly imprinted polymer (MP) nanofilrns for transferrin (Trf) have been synthesized on gold surfaces by electro-polymerizing the functional monomer scopoletin in the presence of the protein target or around pre-adsorbed Trf. As determined by atomic force microscopy (AFM) the film thickness was comparable with the molecular dimension of the target. The target (re)binding properties of the electro-synthesized MIP films was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) through the target-binding induced permeability changes of the MIP nanofilms to the ferricyanide redox marker, as well as by surface plasmon resonance (SPR) and surface enhanced infrared absorption spectroscopy (SEIRAS) of the immobilized protein molecules. For Trf a linear concentration dependence in the lower micromolar range and an imprinting factor of similar to 5 was obtained by SWV and SPR. Furthermore, non-target proteins including the iron-free apo-Trf were discriminated by pronounced size and shape specificity. Whilst it is generally assumed that the rebinding of the target or of cross-reacting proteins exclusively takes place at the polymer here we considered also the interaction of the protein molecules with the underlying gold transducers. We demonstrate by SWV that adsorption of proteins suppresses the signal of the redox marker even at the bare gold surface and by SEIRAS that the treatment of the MIP with proteinase K or NaOH only partially removes the target protein. Therefore, we conclude that when interpreting binding of proteins to directly MIP-covered gold electrodes the interactions between the protein and the gold surface should also be considered.}, language = {en} } @article{NeumannGoetzWrzoleketal.2018, author = {Neumann, Bettina and G{\"o}tz, Robert and Wrzolek, Pierre and Scheller, Frieder W. and Weidinger, Inez M. and Schwalbe, Matthias and Wollenberger, Ulla}, title = {Enhancement of the Electrocatalytic Activity of Thienyl-Substituted Iron Porphyrin Electropolymers by a Hangman Effect}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {10}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201800934}, pages = {4353 -- 4361}, year = {2018}, abstract = {The thiophene-modified iron porphyrin FeT3ThP and the respective iron Hangman porphyrin FeH3ThP, incorporating a carboxylic acid hanging group in the second coordination sphere of the iron center, were electropolymerized on glassy carbon electrodes using 3,4-ethylenedioxythiophene (EDOT) as co-monomer. Scanning electron microscopy images and Resonance Raman spectra demonstrated incorporation of the porphyrin monomers into a fibrous polymer network. Porphyrin/polyEDOT films catalyzed the reduction of molecular oxygen in a four-electron reaction to water with onset potentials as high as +0.14V vs. Ag/AgCl in an aqueous solution of pH7. Further, FeT3ThP/polyEDOT films showed electrocatalytic activity towards reduction of hydrogen peroxide at highly positive potentials, which was significantly enhanced by introduction of the carboxylic acid hanging group in FeH3ThP. The second coordination sphere residue promotes formation of a highly oxidizing reaction intermediate, presumably via advantageous proton supply, as observed for peroxidases and catalases making FeH3ThP/polyEDOT films efficient mimics of heme enzymes.}, language = {en} } @article{TadjoungWaffoYesildagCasertaetal.2018, author = {Tadjoung Waffo, Armel Franklin and Yesildag, Cigdem and Caserta, Giorgio and Katz, Sagie and Zebger, Ingo and Lensen, Marga C. and Wollenberger, Ulla and Scheller, Frieder W. and Altintas, Zeynep}, title = {Fully electrochemical MIP sensor for artemisinin}, series = {Sensors and actuators : B, Chemical}, volume = {275}, journal = {Sensors and actuators : B, Chemical}, publisher = {Elsevier}, address = {Lausanne}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.08.018}, pages = {163 -- 173}, year = {2018}, abstract = {This study aims to develop a rapid, sensitive and cost-effective biomimetic electrochemical sensor for artemisinin determination in plant extracts and for pharmacokinetic studies. A novel molecularly imprinted polymer (MIP)based electrochemical sensor was developed by electropolymerization of o-phenylenediamine (o-PD) in the presence of artemisinin on gold wire surface for sensitive detection of artemisinin. The experimental parameters, including selection of functional monomer, polymerization conditions, template extraction after polymerization, influence of pH and buffer were all optimized. Every step of imprinted film synthesis were evaluated by employing voltammetry techniques, surface-enhanced infrared absorption spectroscopy (SEIRAS) and atomic force microscopy (AFM). The specificity was further evaluated by investigating non-specific artemisinin binding on non-imprinted polymer (NIP) surfaces and an imprinting factor of 6.8 was achieved. The artemisinin imprinted polymers using o-PD as functional monomer have provided highly stable and effective binding cavities for artemisinin. Cross-reactivity studies with drug molecules showed that the MIPs are highly specific for artemisinin. The influence of matrix effect was further investigated both in artificial plant matrix and diluted human serum. The results revealed a high affinity of artemisinin-MIP with dissociation constant of 7.3 x 10(-9) M and with a detection limit of 0.01 mu M and 0.02 mu M in buffer and plant matrix, respectively.}, language = {en} } @misc{OzcelikayKurbanogluZhangetal.2019, author = {Ozcelikay, Goksu and Kurbanoglu, Sevinc and Zhang, Xiaorong and S{\"o}z, {\c{C}}ağla Kosak and Wollenberger, Ulla and Ozkan, Sibel A. and Yarman, Aysu and Scheller, Frieder W.}, title = {Electrochemical MIP Sensor for Butyrylcholinesterase}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1138}, issn = {1866-8372}, doi = {10.25932/publishup-50185}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-501854}, pages = {13}, year = {2019}, abstract = {Molecularly imprinted polymers (MIPs) mimic the binding sites of antibodies by substituting the amino acid-scaffold of proteins by synthetic polymers. In this work, the first MIP for the recognition of the diagnostically relevant enzyme butyrylcholinesterase (BuChE) is presented. The MIP was prepared using electropolymerization of the functional monomer o-phenylenediamine and was deposited as a thin film on a glassy carbon electrode by oxidative potentiodynamic polymerization. Rebinding and removal of the template were detected by cyclic voltammetry using ferricyanide as a redox marker. Furthermore, the enzymatic activity of BuChE rebound to the MIP was measured via the anodic oxidation of thiocholine, the reaction product of butyrylthiocholine. The response was linear between 50 pM and 2 nM concentrations of BuChE with a detection limit of 14.7 pM. In addition to the high sensitivity for BuChE, the sensor responded towards pseudo-irreversible inhibitors in the lower mM range.}, language = {en} } @article{MitrovaTadjoungWaffoKaufmannetal.2018, author = {Mitrova, Biljana and Tadjoung Waffo, Armel Franklin and Kaufmann, Paul and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Trimethylamine N-Oxide Electrochemical Biosensor with a Chimeric Enzyme}, series = {ChemElectroChem}, volume = {6}, journal = {ChemElectroChem}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201801422}, pages = {1732 -- 1737}, year = {2018}, abstract = {For the first time, an enzyme-based electrochemical biosensor system for determination of trimethylamine N-oxide (TMAO) is described. It employs an active chimeric variant of TorA in combination with an enzymatically deoxygenating system and a low-potential mediator for effective regeneration of the enzyme and cathodic current generation. TMAO reductase (TorA) is a molybdoenzyme found in marine and most enterobacteria that specifically catalyzes the reduction of TMAO to trimethylamine (TMA). The chimeric TorA, named TorA-FDH, corresponds to the apoform of TorA from Escherichia coli reconstituted with the molybdenum cofactor from formate dehydrogenase (FDH). Each enzyme, TorA and TorA-FDH, was immobilized on the surface of a carbon electrode and protected with a dialysis membrane. The biosensor operates at an applied potential of -0.8V [vs. Ag/AgCl (1M KCl)] under ambient air conditions thanks to an additional enzymatic O-2-scavenger system. A comparison between the two enzymatic sensors revealed a much higher sensitivity for the biosensor with immobilized TorA-FDH. This biosensor exhibits a sensitivity of 14.16nA/M TMAO in a useful measuring range of 2-110M with a detection limit of LOD=2.96nM (S/N=3), and was similar for TMAO in buffer and in spiked serum samples. With a response time of 16 +/- 2 s, the biosensor is stable over prolonged daily measurements (n=20). This electrochemical biosensor provides suitable applications in detecting TMAO levels in human serum.}, language = {en} } @article{JetzschmannTankJagerszkietal.2019, author = {Jetzschmann, Katharina J. and Tank, Steffen and Jagerszki, Gyula and Gyurcsanyi, Robert E. and Wollenberger, Ulla and Scheller, Frieder W.}, title = {Bio-Electrosynthesis of Vectorially Imprinted Polymer Nanofilms for Cytochrome P450cam}, series = {ChemElectroChem}, volume = {6}, journal = {ChemElectroChem}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201801851}, pages = {1818 -- 1823}, year = {2019}, abstract = {A new approach for synthesizing a vectorially imprinted polymer (VIP) is presented for the microbial cytochrome P450cam enzyme. A surface attached binding motif of a natural reaction partner of the target protein, putidaredoxin (Pdx), is the anchor to the underlying transducer. The 15 amino acid peptide anchor, which stems from the largest continuous amino acid chain within the binding site of Pdx was modified: (i) internal cysteines were replaced by serines to prevent disulfide bond formation; (ii) 2 ethylene glycol units were attached to the N-terminus as a spacer region; and (iii) an N-terminal cysteine was added to allow the immobilization on the gold electrode surface. Immobilization on GCE was achieved via an N-(1-pyrenyl)maleimide (NPM) cross-linker. In this way oriented immobilization of P450cam was accomplished by binding it to a peptide-modified gold or glassy carbon electrode (GCE) prior to the electrosynthesis of a polymer nanofilm around the immobilized target. This VIP nanofilm enabled reversible oriented docking of P450cam as it is indicated by the catalytic oxygen reduction via direct electron transfer between the enzyme and the underlying electrode. Catalysis of oxygen reduction by P450cam bound to the VIP-modified GCE was used to measure rebinding to the VIP. The mild coupling of an oxidoreductase with the electrode may be appropriate for realizing electrode-driven substrate conversion by instable P450 enzymes without the need of NADPH co-factor.}, language = {en} } @misc{SchellerZhangYarmanetal.2019, author = {Scheller, Frieder W. and Zhang, Xiaorong and Yarman, Aysu and Wollenberger, Ulla and Gyurcs{\´a}nyi, R{\´o}bert E.}, title = {Molecularly imprinted polymer-based electrochemical sensors for biopolymers}, series = {Current opinion in electrochemistry}, volume = {14}, journal = {Current opinion in electrochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2018.12.005}, pages = {53 -- 59}, year = {2019}, abstract = {Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one 'separation plate'; thus, the selectivity does not reach the values of 'bulk' measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an 'overall apparent' signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively.}, language = {en} } @article{HassanWollenberger2019, author = {Hassan, Rabeay Y. A. and Wollenberger, Ulla}, title = {Direct determination of bacterial cell viability using carbon nanotubes modified screen-printed electrodes}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {31}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201900047}, pages = {1112 -- 1117}, year = {2019}, abstract = {For the early detection of bacterial infection, there is a need for rapid, sensitive, and label-free assays. Thus, in this study, nanostrucured microbial electrochemical platform is designed to monitor the viability and cell growth of S. aureus. Using multi-walled carbon nanotube modified screen-printed electrodes (MWCNTs/SPE), the cyclic voltammetric measurements showed only one irreversible oxidation peak at 600 mV vs Ag/AgCl that accounts for the viable and metabolically active bacterial cells. The assay was optimized and the secreted metabolites, in the extracellular matrix, were directly detected. The peak current showed a positive correlation with viable cell numbers ranging from OD600 nm of 0.1 to 1.1, indicating that the activity of live cells can be quantified. Consequently, responses of viable and non-viable cells of S. aureus to the effects of antibiotic and respiratory chain inhibitors were determined. Thus, the proposed nanostructure-based bacterial sensor provides a reasonable and reliable way for real-time monitoring of live-dead cell functions, and antibacterial profiling.}, language = {en} } @article{BadalyanDierichStibaetal.2014, author = {Badalyan, Artavazd and Dierich, Marlen and Stiba, Konstanze and Schwuchow, Viola and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers}, series = {Biosensors}, volume = {4}, journal = {Biosensors}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/bios4040403}, pages = {403 -- 421}, year = {2014}, abstract = {Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9\%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.}, language = {en} }