@article{DeSousaMotaDinizCoelhoetal.2021, author = {De Sousa Mota, Cristiano and Diniz, Ana and Coelho, Catarina and Santos-Silva, Teresa and Esmaeeli Moghaddam Tabalvandani, Mariam and Leimk{\"u}hler, Silke and Cabrita, Eurico J. and Marcelo, Filipa and Rom{\~a}o, Maria Jo{\~a}o}, title = {Interrogating the inhibition mechanisms of human aldehyde oxidase by X-ray crystallography and NMR spectroscopy}, series = {Journal of medicinal chemistry / American Chemical Society}, volume = {64}, journal = {Journal of medicinal chemistry / American Chemical Society}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-2623}, doi = {10.1021/acs.jmedchem.1c01125}, pages = {13025 -- 13037}, year = {2021}, abstract = {Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.}, language = {en} } @phdthesis{EsmaeeliMoghaddamTabalvandani2022, author = {Esmaeeli Moghaddam Tabalvandani, Mariam}, title = {ROS Generation in Human Aldehyde Oxidase And the Effects of ROS and Reactive Sulfhydryl on the Activity of the Enzyme}, doi = {10.25932/publishup-53460}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-534600}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2022}, abstract = {Aldehyde oxidases (AOXs) (E.C. 1.2.3.1) are molybdoflavo-enzymes belonging to the xanthine oxidase (XO) family. AOXs in mammals contain one molybdenum cofactor (Moco), one flavin adenine dinucleotide (FAD) and two [2Fe-2S] clusters, the presence of which is essential for the activity of the enzyme. Human aldehyde oxidase (hAOX1) is a cytosolic enzyme mainly expressed in the liver. hAOX1is involved in the metabolism of xenobiotics. It oxidizes aldehydes to their corresponding carboxylic acids and hydroxylates N-heterocyclic compounds. Since these functional groups are widely present in therapeutics, understanding the behaviour of hAOX1 has important implications in medicine. During the catalytic cycle of hAOX1, the substrate is oxidized at Moco and electrons are internally transferred to FAD via the FeS clusters. An electron acceptor juxtaposed to the FAD receives the electrons and re-oxidizes the enzyme for the next catalytic cycle. Molecular oxygen is the endogenous electron acceptor of hAOX1 and in doing so it is reduced and produces reactive oxygen species (ROS) including hydrogen peroxide (H2O2) and superoxide (O2.-). The production of ROS has patho-physiological importance, as ROS can have a wide range of effects on cell components including the enzyme itself. In this thesis, we have shown that hAOX1 loses its activity over multiple cycles of catalysis due to endogenous ROS production and have identified a cysteine rich motif that protects hAOX1 from the ROS damaging effects. We have also shown that a sulfido ligand, which is bound at Moco and is essential for the catalytic activity of the enzyme, is vulnerable during turnover. The ROS produced during the course of the reaction are also able to remove this sulfido ligand from Moco. ROS, in addition, oxidize particular cysteine residues. The combined effects of ROS on the sulfido ligand and on specific cysteine residues in the enzyme result in its inactivation. Furthermore, we report that small reducing agents containing reactive sulfhydryl groups, in a selective manner, inactivate some of the mammalian AOXs by modifying the sulfido ligand at Moco. The mechanism of ROS production by hAOX1 is another scope that has been investigated as part of the work in this thesis. We have shown that the ratio of type of ROS, i.e. hydrogen peroxide (H2O2) and superoxide (O2.-), produced by hAOX1 is determined by a particular position on a flexible loop that locates in close proximity of FAD. The size of the cavity at the ROS producing site, i.e. the N5 position of the FAD isoalloxazine ring, kinetically affects the amount of each type of ROS generated by hAOX1. Taken together, hAOX1 is an enzyme with emerging importance in pharmacological and medical studies, not only due to its involvement in drug metabolism, but also due to ROS production which has physiological and pathological implications.}, language = {en} } @article{BiterovaEsmaeeliMoghaddamTabalvandaniAlanenetal.2018, author = {Biterova, Ekaterina and Esmaeeli Moghaddam Tabalvandani, Mariam and Alanen, Heli I. and Saaranen, Mirva and Ruddock, Lloyd W.}, title = {Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-25237-7}, pages = {12}, year = {2018}, abstract = {Coronary artery disease is the most common cause of death globally and is linked to a number of risk factors including serum low density lipoprotein, high density lipoprotein, triglycerides and lipoprotein(a). Recently two proteins, angiopoietin-like protein 3 and 4, have emerged from genetic studies as being factors that significantly modulate plasma triglyceride levels and coronary artery disease. The exact function and mechanism of action of both proteins remains to be elucidated, however, mutations in these proteins results in up to 34\% reduction in coronary artery disease and inhibition of function results in reduced plasma triglyceride levels. Here we report the crystal structures of the fibrinogen-like domains of both proteins. These structures offer new insights into the reported loss of function mutations, the mechanisms of action of the proteins and open up the possibility for the rational design of low molecular weight inhibitors for intervention in coronary artery disease.}, language = {en} } @article{MotaEsmaeeliMoghaddamTabalvandaniCoelhoetal.2019, author = {Mota, Cristiano and Esmaeeli Moghaddam Tabalvandani, Mariam and Coelho, Catarina and Santos-Silva, Teresa and Wolff, Martin and Foti, Alessandro and Leimk{\"u}hler, Silke and Romao, Maria Joao}, title = {Human aldehyde oxidase (hAOX1)}, series = {FEBS Open Bio}, volume = {9}, journal = {FEBS Open Bio}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {2211-5463}, doi = {10.1002/2211-5463.12617}, pages = {925 -- 934}, year = {2019}, abstract = {Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug-metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug-metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)-free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild-type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 degrees C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. EnzymesAldehyde oxidase (); xanthine dehydrogenase (); xanthine oxidase (). DatabasesStructural data are available in the Protein Data Bank under the accession number .}, language = {en} } @misc{BiterovaEsmaeeliMoghaddamTabalvandaniAlanenetal.2018, author = {Biterova, Ekaterina and Esmaeeli Moghaddam Tabalvandani, Mariam and Alanen, Heli I. and Saaranen, Mirva and Ruddock, Lloyd W.}, title = {Structures of Angptl3 and Angptl4}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1048}, issn = {1866-8372}, doi = {10.25932/publishup-46794}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-467943}, pages = {14}, year = {2018}, abstract = {Coronary artery disease is the most common cause of death globally and is linked to a number of risk factors including serum low density lipoprotein, high density lipoprotein, triglycerides and lipoprotein(a). Recently two proteins, angiopoietin-like protein 3 and 4, have emerged from genetic studies as being factors that significantly modulate plasma triglyceride levels and coronary artery disease. The exact function and mechanism of action of both proteins remains to be elucidated, however, mutations in these proteins results in up to 34\% reduction in coronary artery disease and inhibition of function results in reduced plasma triglyceride levels. Here we report the crystal structures of the fibrinogen-like domains of both proteins. These structures offer new insights into the reported loss of function mutations, the mechanisms of action of the proteins and open up the possibility for the rational design of low molecular weight inhibitors for intervention in coronary artery disease.}, language = {en} }