@misc{BarboliniWoutersenDupontNivetetal.2020, author = {Barbolini, Natasha and Woutersen, Amber and Dupont-Nivet, Guillaume and Silvestro, Daniele and Tardif-Becquet, Delphine and Coster, Pauline M. C. and Meijer, Niels and Chang, Cun and Zhang, Hou-Xi and Licht, Alexis and Rydin, Catarina and Koutsodendris, Andreas and Han, Fang and Rohrmann, Alexander and Liu, Xiang-Jun and Zhang, Y. and Donnadieu, Yannick and Fluteau, Frederic and Ladant, Jean-Baptiste and Le Hir, Guillaume and Hoorn, M. Carina}, title = {Cenozoic evolution of the steppe-desert biome in Central Asia}, series = {Science Advances}, volume = {6}, journal = {Science Advances}, number = {41}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.abb8227}, pages = {16}, year = {2020}, abstract = {The origins and development of the arid and highly seasonal steppe-desert biome in Central Asia, the largest of its kind in the world, remain largely unconstrained by existing records. It is unclear how Cenozoic climatic, geological, and biological forces, acting at diverse spatial and temporal scales, shaped Central Asian ecosystems through time. Our synthesis shows that the Central Asian steppe-desert has existed since at least Eocene times but experienced no less than two regime shifts, one at the Eocene-Oligocene Transition and one in the mid-Miocene. These shifts separated three successive "stable states," each characterized by unique floral and faunal structures. Past responses to disturbance in the Asian steppe-desert imply that modern ecosystems are unlikely to recover their present structures and diversity if forced into a new regime. This is of concern for Asian steppes today, which are being modified for human use and lost to desertification at unprecedented rates.}, language = {en} } @article{PageLichtDupontNivetetal.2019, author = {Page, M. and Licht, A. and Dupont-Nivet, Guillaume and Meijer, Niels and Barbolini, Natasha and Hoorn, C. and Schauer, A. and Huntington, K. and Bajnai, D. and Fiebig, J. and Mulch, Andreas and Guo, Z.}, title = {Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse}, series = {Geology}, volume = {47}, journal = {Geology}, number = {3}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G45480.1}, pages = {203 -- 206}, year = {2019}, abstract = {The fall into the Oligocene icehouse is marked by a steady decline in global temperature with punctuated cooling at the Eocene-Oligocene transition, both of which are well documented in the marine realm. However, the chronology and mechanisms of cooling on land remain unclear. Here, we use clumped isotope thermometry on northeastern Tibetan continental carbonates to reconstruct a detailed Paleogene surface temperature record for the Asian continental interior, and correlate this to an enhanced pollen data set. Our results show two successive dramatic (>9 degrees C) temperature drops, at 37 Ma and at 33.5 Ma. These large-magnitude decreases in continental temperatures can only be explained by a combination of both regional cooling and shifts of the rainy season to cooler months, which we interpret to reflect a decline of monsoonal intensity. Our results suggest that the response of Asian surface temperatures and monsoonal rainfall to the steady decline of atmospheric CO2 and global temperature through the late Eocene was nonlinear and occurred in two steps separated by a period of climatic instability. Our results support the onset of the Antarctic Circumpolar Current coeval to the Oligocene isotope event 1 (Oi-1) glaciation at 33.5 Ma, reshaping the distribution of surface heat worldwide; however, the origin of the 37 Ma cooling event remains less clear.}, language = {en} } @article{KayaDupontNivetProustetal.2019, author = {Kaya, Mustafa Y{\"u}cel and Dupont-Nivet, Guillaume and Proust, Jean-No{\"e}l and Roperch, Pierrick and Bougeois, Laurie and Meijer, Niels and Frieling, Joost and Fioroni, Chiara and Altiner, Sevin{\c{c}} {\"O}zkan and Vardar, Ezgi and Barbolini, Natasha and Stoica, Marius and Aminov, Jovid and Mamtimin, Mehmut and Zhaojie, Guo}, title = {Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins)}, series = {Basin research}, volume = {31}, journal = {Basin research}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12330}, pages = {461 -- 486}, year = {2019}, abstract = {The proto-Paratethys Sea covered a vast area extending from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous and early Paleogene. Climate modelling and proxy studies suggest that Asian aridification has been governed by westerly moisture modulated by fluctuations of the proto-Paratethys Sea. Transgressive and regressive episodes of the proto-Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained. This hampers understanding of their driving mechanisms (tectonic and/or eustatic) and their contribution to Asian aridification. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed palaeoenvironmental analysis for the Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins. This enables us to identify the major drivers of marine fluctuations and their potential consequences on Asian aridification. A major regional restriction event, marked by the exceptionally thick (<= 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma) in the Aertashi Formation. This is followed by the largest recorded proto-Paratethys Sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma), both within the Qimugen Formation. The transgression of the next incursion in the Kalatar and Wulagen formations is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression in the Bashibulake Formation is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian-Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd sea incursions. However, the 3rd sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification.}, language = {en} }