@article{DeplazesLueckgePetersonetal.2013, author = {Deplazes, Gaudenz and Lueckge, Andreas and Peterson, Larry C. and Timmermann, Axel and Hamann, Yvonne and Hughen, Konrad A. and Roehl, Ursula and Laj, Carlo and Cane, Mark A. and Sigman, Daniel M. and Haug, Gerald H.}, title = {Links between tropical rainfall and North Atlantic climate during the last glacial period}, series = {Nature geoscience}, volume = {6}, journal = {Nature geoscience}, number = {3}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/ngeo1712}, pages = {213 -- 217}, year = {2013}, abstract = {During the last glacial period, the North Atlantic region experienced pronounced, millennial-scale alternations between cold, stadial conditions and milder interstadial conditions-commonly referred to as Dansgaard-Oeschger oscillations-as well as periods of massive iceberg discharge known as Heinrich events(1). Changes in Northern Hemisphere temperature, as recorded in Greenland(2-4), are thought to have affected the location of the Atlantic intertropical convergence zone(5,6) and the strength of the Indian summer monsoon(7,8). Here we use high-resolution records of sediment colour-a measure of terrigenous versus biogenic content-from the Cariaco Basin off the coast of Venezuela and the Arabian Sea to assess teleconnections with the North Atlantic climate system during the last glacial period. The Cariaco record indicates that the intertropical convergence zone migrated seasonally over the site during mild stadial conditions, but was permanently displaced south of the basin during peak stadials and Heinrich events. In the Arabian Sea, we find evidence of a weak Indian summer monsoon during the stadial events. The tropical records show a more variable response to North Atlantic cooling than the Greenland temperature records. We therefore suggest that Greenland climate is especially sensitive to variations in the North Atlantic system-in particular sea-ice extent-whereas the intertropical convergence zone and Indian monsoon system respond primarily to variations in mean Northern Hemisphere temperature.}, language = {en} } @article{KienelPlessenSchettleretal.2013, author = {Kienel, Ulrike and Plessen, Birgit and Schettler, Georg and Weise, Stephan and Pinkerneil, Sylvia and Boehnel, Harald and Englebrecht, Amy C. and Haug, Gerald H.}, title = {Sensitivity of a hypersaline crater lake to the seasonality of rainfall, evaporation, and guano supply}, series = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, volume = {183}, journal = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, number = {2}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {1863-9135}, doi = {10.1127/1863-9135/2013/0405}, pages = {135 -- 152}, year = {2013}, abstract = {The hypersaline crater lake and its catchment on seabird island Isabel (Pacific, off Mexico) was studied to explore the influence of strong seasonal variations in rainfall/evaporation and guano contribution on its limnology. The hypersaline lake water (HSW, 78 \%) is up to 2.2-times enriched in inert ions relative to mean seawater. Rainfall during summer dilutes the HSW to form a less saline rainwater body (RWB) above a chemolimnion between 2 and 4 m water depth. The RWB is inhabited first by diatoms and ostracods followed later on by cyanobacteria and ciliates. Evaporation of > 1.5 m depth of lake water over the dry season increases the salinity of the RWB until the water column becomes isohaline at HSW concentrations in the late dry season. Differences in the stable isotope composition of water and primary producers in RWB and HSW reflect this development. Introduction of seabird guano and the decrease of salinity fuel a high primary production in the RWB with higher delta(CDIC)-C-13 and delta(13)Corg of particulate organic matter than in the HSW. The high N supply leads to high delta N-15 NH4 values (+ 39 \% in the HSW) as the consequence of ammonia volatilization that is strongest during guano maturation and with evaporative salinity increase from the HSW. Precipitation of carbonate (calcite and aragonite) from the RWB and the HSW is hindered by the high concentration of guano-derived P. This inhibition may be overcome with evaporative supersaturation during particularly dry conditions. Carbonate may also precipitate during particularly wet conditions from the dilute RWB, where the P-concentration is reduced during an active phytoplankton production that raises the pH. Differences in the stable isotope signatures of carbon and oxygen in HSW and RWB (+ 5 \% delta(CDIC)-C-13 and -3 \% d18OH2O) suggest the processes of carbonate precipitation can be distinguished based on the isotope signature of the carbonates deposited. Changes in the lake system are indicated when lower temperatures and higher rainfall in the 2006 wet season introduced more and less mature guano to the lake. The lower pH was accompanied by lower ammonia volatilization and carbonate precipitation as indicated by an increased concentration of NH4, Ca, Sr and DIC, while delta H-2, delta(NNH4)-N-15, and salinity were lower. According to our results, the observed sediment laminations should reflect the introduction of catchment material (including guano) with runoff, the RWB plankton production, and the carbonate precipitation in relation to its origin and seasonality.}, language = {en} }