@misc{WeisshuhnMuellerWiggering2018, author = {Weisshuhn, Peter and Mueller, Felix and Wiggering, Hubert}, title = {Ecosystem Vulnerability Review}, series = {Environmental Management}, volume = {61}, journal = {Environmental Management}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0364-152X}, doi = {10.1007/s00267-018-1023-8}, pages = {904 -- 915}, year = {2018}, abstract = {To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.}, language = {en} } @article{RolfPauleitWiggering2018, author = {Rolf, Werner and Pauleit, Stephan and Wiggering, Hubert}, title = {A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure}, series = {Urban forestry \& urban greening}, volume = {40}, journal = {Urban forestry \& urban greening}, publisher = {Urban \& Fischer}, address = {Jena}, issn = {1618-8667}, doi = {10.1016/j.ufug.2018.07.012}, pages = {73 -- 83}, year = {2018}, abstract = {During the last years Urban Green Infrastructure (UGI) has evolved as a research focus across Europe. UGI can be understood as a multifunctional network of different urban green spaces and elements contributing to urban benefits. Urban agriculture has gained increasing research interest in this context. While a strong focus has been made on functions and benefits of small scale activities, the question is still open, whether these findings can be up-scaled and transferred to the farmland scale. Furthermore, multifunctionality of urban and peri-urban agriculture is rarely being considered in the landscape context. This research aims to address these gaps and harnesses the question if agricultural landscapes - which in many European metropolitan regions provide significant spatial potential - can contribute to UGI as multifunctional green spaces. This work considers multifunctionality qualitatively based on stakeholder opinion, using a participatory research approach. This study provides new insights in peri-urban farmland potentials for UGI development, resulting into a strategy framework. Furthermore, it reflects on the role of the stakeholder involvement for `multifunctionality planning´. It suggests that it helps to define meaningful bundles of intertwined functions that interact on different scales, helping to deal with non-linearity of multiple functions and to better manage them simultaneously.}, language = {en} } @misc{WeisshuhnRecklingStachowetal.2017, author = {Weißhuhn, Peter and Reckling, Moritz and Stachow, Ulrich and Wiggering, Hubert}, title = {Supporting agricultural ecosystem services through the integration of perennial polycultures into crop rotations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1069}, doi = {10.25932/publishup-47441}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474410}, pages = {22}, year = {2017}, abstract = {This review analyzes the potential role and long-term effects of field perennial polycultures (mixtures) in agricultural systems, with the aim of reducing the trade-offs between provisioning and regulating ecosystem services. First, crop rotations are identified as a suitable tool for the assessment of the long-term effects of perennial polycultures on ecosystem services, which are not visible at the single-crop level. Second, the ability of perennial polycultures to support ecosystem services when used in crop rotations is quantified through eight agricultural ecosystem services. Legume-grass mixtures and wildflower mixtures are used as examples of perennial polycultures, and compared with silage maize as a typical crop for biomass production. Perennial polycultures enhance soil fertility, soil protection, climate regulation, pollination, pest and weed control, and landscape aesthetics compared with maize. They also score lower for biomass production compared with maize, which confirms the trade-off between provisioning and regulating ecosystem services. However, the additional positive factors provided by perennial polycultures, such as reduced costs for mineral fertilizer, pesticides, and soil tillage, and a significant preceding crop effect that increases the yields of subsequent crops, should be taken into account. However, a full assessment of agricultural ecosystem services requires a more holistic analysis that is beyond the capabilities of current frameworks.}, language = {en} } @article{WeisshuhnRecklingStachowetal.2017, author = {Weisshuhn, Peter and Reckling, Moritz and Stachow, Ulrich and Wiggering, Hubert}, title = {Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations}, series = {Sustainability}, volume = {9}, journal = {Sustainability}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su9122267}, pages = {20}, year = {2017}, abstract = {This review analyzes the potential role and long-term effects of field perennial polycultures (mixtures) in agricultural systems, with the aim of reducing the trade-offs between provisioning and regulating ecosystem services. First, crop rotations are identified as a suitable tool for the assessment of the long-term effects of perennial polycultures on ecosystem services, which are not visible at the single-crop level. Second, the ability of perennial polycultures to support ecosystem services when used in crop rotations is quantified through eight agricultural ecosystem services. Legume-grass mixtures and wildflower mixtures are used as examples of perennial polycultures, and compared with silage maize as a typical crop for biomass production. Perennial polycultures enhance soil fertility, soil protection, climate regulation, pollination, pest and weed control, and landscape aesthetics compared with maize. They also score lower for biomass production compared with maize, which confirms the trade-off between provisioning and regulating ecosystem services. However, the additional positive factors provided by perennial polycultures, such as reduced costs for mineral fertilizer, pesticides, and soil tillage, and a significant preceding crop effect that increases the yields of subsequent crops, should be taken into account. However, a full assessment of agricultural ecosystem services requires a more holistic analysis that is beyond the capabilities of current frameworks.}, language = {en} } @article{AlbertSchroeterSchlaackHansjuergensetal.2017, author = {Albert, Christian and Schroeter-Schlaack, Christoph and Hansjuergens, Bernd and Dehnhardt, Alexandra and Doering, Ralf and Job, Hubert and Koeppel, Johann and Kraetzig, Sebastian and Matzdorf, Bettina and Reutter, Michaela and Schaltegger, Stefan and Scholz, Mathias and Siegmund-Schultze, Marianna and Wiggering, Hubert and Woltering, Manuel and von Haaren, Christina}, title = {An economic perspective on land use decisions in agricultural landscapes: Insights from the TEEB Germany Study}, series = {Ecosystem Services : Science, Policy and Practice}, volume = {25}, journal = {Ecosystem Services : Science, Policy and Practice}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0416}, doi = {10.1016/j.ecoser.2017.03.020}, pages = {69 -- 78}, year = {2017}, abstract = {Agricultural landscapes safeguard ecosystem services (ES) and biodiversity upon which human well-being depends. However, only a fraction of these services are generally considered in land management decisions, resulting in trade-offs and societally inefficient solutions. The TEEB Study (The Economics of Ecosystems and Biodiversity) spearheaded the development of assessments of the economic significance of ES and biodiversity. Several national TEEB follow-ups have compiled case studies and derived targeted policy advice. By synthesizing insights from "Natural Capital Germany - TEEB DE" and focusing on rural areas, the objectives of this study were (i) to explore causes of the continued decline of ES and biodiversity, (ii) to introduce case studies exemplifying the economic significance of ES and biodiversity in land use decisions, and (iii) to synthesize key recommendations for policy, planning and management. Our findings indicate that the continued decrease of ES and biodiversity in Germany can be explained by implementation deficits within a well-established nature conservation system. Three case studies on grassland protection, the establishment of riverbank buffer zones and water-sensitive farming illustrate that an economic perspective can convey recognition of the values of ES and biodiversity. We conclude with suggestions for enhanced consideration, improved conservation and sustainable use of ES and biodiversity. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @misc{AroduduHelmingWiggeringetal.2017, author = {Arodudu, Oludunsin Tunrayo and Helming, Katharina and Wiggering, Hubert and Voinov, Alexey}, title = {Bioenergy from low-intensity agricultural systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400403}, pages = {18}, year = {2017}, abstract = {In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture). Estimates of the net energy gain (NEG) and the energy return on energy invested (EROEI) obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5-488.3 GJ·ha-1 of NEG and an EROEI of 5.4-5.9 for maize ethanol production systems, and as much as 155.0-283.9 GJ·ha-1 of NEG and an EROEI of 14.7-22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8-52.5 GJ·ha-1 and an EROEI of 1.2-1.7 for maize ethanol production systems, as well as a NEG of 59.3-188.7 GJ·ha-1 and an EROEI of 2.2-10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.}, language = {en} } @article{WiggeringSteinhardt2015, author = {Wiggering, Hubert and Steinhardt, Uta}, title = {A conceptual model for site-specific agricultural land-use}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {295}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2014.08.011}, pages = {42 -- 46}, year = {2015}, abstract = {Land-use concepts provide decision support for the most efficient usage options according to sustainable development and multifunctionality requirements. However, developments in landscape-related, agricultural production schemes are primarily driven by economic benefits. Therefore, most agricultural land-use concepts tackle particular problems or interests and lack a systemic perspective. As a result, we discuss a conceptual model for future site-specific agricultural land-use with an inbuilt requirement for adequate experimental sites to enable monitoring systems for a new generation of ecosystem models and for new approaches to address science-stakeholder interactions.}, language = {en} } @article{Wiggering2014, author = {Wiggering, Hubert}, title = {The geology - land use - nexus}, series = {Environmental earth sciences}, volume = {71}, journal = {Environmental earth sciences}, number = {12}, publisher = {Springer}, address = {New York}, issn = {1866-6280}, doi = {10.1007/s12665-013-2908-8}, pages = {5037 -- 5044}, year = {2014}, language = {en} } @article{KoenigZhenHelmingetal.2014, author = {Koenig, H. J. and Zhen, L. and Helming, K. and Uthes, S. and Yang, L. and Cao, Xianyong and Wiggering, Hubert}, title = {Assessing the impact of the sloping land conversion programme on rural sustainability in Guyuan, Western China}, series = {Land degradation \& development}, volume = {25}, journal = {Land degradation \& development}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1085-3278}, doi = {10.1002/ldr.2164}, pages = {385 -- 396}, year = {2014}, abstract = {The goal of China's sloping land conversion programme (SLCP) is to combat soil erosion and to reduce rural poverty. An ex-ante assessment of possible SLCP impacts was conducted with a focus on rural sustainability, taking the drought-prone region of Guyuan in Western China as an example. The Framework for Participatory Impact Assessment (FoPIA) was used to conduct two complementary impact assessments, one assessing SLCP impacts at regional level and a second one assessing alternative forest management options, to explore possible trade-offs among the economic, social and environmental dimensions of sustainability. Regional stakeholders assessed the SLCP to be capable of reducing soil erosion but felt it negatively affected rural employment, and a further continuation of the Programme was advocated. Assessment of three forest management scenarios by scientists showed that an orientation towards energy forests is potentially beneficial to all three sustainability dimensions. Ecological forests had disproportionate positive impacts on environmental functions and adverse impact on the other two sustainability dimensions. Economic forests were assessed to serve primarily the economic and social sustainability dimensions, while environmental impacts were still tolerable. The FoPIA results were evaluated against the available literature on the SLCP. Overall, the assessment results appeared to be reasonable, but the results of the regional stakeholders appeared to be too optimistic compared with the more critical assessment of the scientists. The SLCP seems to have the potential to tackle soil erosion but requires integrated forest management to minimize the risk of water stress while contributing to economic and social benefits in Guyuan. Copyright (C) 2012 John Wiley \& Sons, Ltd.}, language = {en} } @article{WernerWernerWielandetal.2014, author = {Werner, Andrea and Werner, Andreas and Wieland, Ralf and Kersebaum, Kurt-Christian and Mirschel, Wilfried and Ende, Hans-Peter and Wiggering, Hubert}, title = {Ex ante assessment of crop rotations focusing on energy crops using a multi-attribute decision-making method}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {45}, journal = {Ecological indicators : integrating monitoring, assessment and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2014.03.013}, pages = {110 -- 122}, year = {2014}, abstract = {The cultivation of plants for use as energy resources is an agricultural and industrial sector with potentially synergistic benefits related to protecting the environment and generating income. Against the background of increasing land-use changes and new agricultural approaches to the production of energy crops, we present a method for identifying future-oriented crop rotations that supports both the economic and environmental components of decision-making strategies with respect to agriculture-related policy decisions (regional mission statements). The conflicting aspects of these objectives can be addressed with the analytic hierarchy process (AHP), a multi-attribute decision-making method that was integrated here. Three models are used to generate simulations of the defined objectives over a planning period of 30 years under the current climate scenario and provide input data for the multi-attribute assessment of several crop rotations. Based on the entire evaluation process, dimensionless global priority vectors are used to indicate how well the crop rotations meet the requirements of the defined mission statement. The method is tested in a municipality in NE Germany. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KoenigUthesSchuleretal.2013, author = {K{\"o}nig, Hannes Jochen and Uthes, Sandra and Schuler, Johannes and Zhen, Lin and Purushothaman, Seema and Suarma, Utia and Sghaier, Mongi and Makokha, Stella and Helming, Katharina and Sieber, Stefan and Chen, Le and Brouwer, Floor and Morris, Jake and Wiggering, Hubert}, title = {Regional impact assessment of land use scenarios in developing countries using the FoPIA approach - findings from five case studies}, series = {Journal of environmental management}, volume = {127}, journal = {Journal of environmental management}, publisher = {Elsevier}, address = {London}, issn = {0301-4797}, doi = {10.1016/j.jenvman.2012.10.021}, pages = {S56 -- S64}, year = {2013}, abstract = {The impact of land use changes on sustainable development is of increasing interest in many regions of the world. This study aimed to test the transferability of the Framework for Participatory Impact Assessment (FoPIA), which was originally developed in the European context, to developing countries, in which lack of data often prevents the use of data-driven impact assessment methods. The core aspect of FoPIA is the stakeholder-based assessment of alternative land use scenarios. Scenario impacts on regional sustainability are assessed by using a set of nine regional land use functions (LUFs), which equally cover the economic, social and environmental dimensions of sustainability. The cases analysed in this study include (1) the alternative spatial planning policies around the Merapi volcano and surrounding areas of Yogyakarta City, Indonesia; (2) the large-scale afforestation of agricultural areas to reduce soil erosion in Guyuan, China; (3) the expansion of soil and water conservation measures in the Oum Zessar watershed, Tunisia; (4) the agricultural intensification and the potential for organic agriculture in Bijapur, India; and (5) the land degradation and land conflicts resulting from land division and privatisation in Narok, Kenya. All five regions are characterised by population growth, partially combined with considerable economic development, environmental degradation problems and social conflicts. Implications of the regional scenario impacts as well as methodological aspects are discussed. Overall, FoPIA proved to be a useful tool for diagnosing regional human-environment interactions and for supporting the communication and social learning process among different stakeholder groups.}, language = {en} } @article{WiggeringLischeidMuelleretal.2014, author = {Wiggering, Hubert and Lischeid, Gunnar and M{\"u}ller, Klaus and Ende, Hans-Peter}, title = {Ern{\"a}hrungssicherheit und zuk{\"u}nftige Landnutzungen}, isbn = {978-3-941880-72-6}, year = {2014}, language = {de} } @article{WiggeringDalchowGlemnitzetal.2006, author = {Wiggering, Hubert and Dalchow, Claus and Glemnitz, Michael and Helming, Katharina and M{\"u}ller, Klaus and Schultz, Alfred and Stachow, Ulrich and Zander, Peter}, title = {Indicators for multifunctional land use : linking socio-economic requirements with landscape potentials}, year = {2006}, abstract = {Indicators to assess sustainable land development often focus on either economic or ecologic aspects of landscape use. The concept of multifunctional land use helps merging those two focuses by emphasising on the rule that economic action is per se accompanied by ecological utility: commodity outputs (CO, e.g., yields) are paid for on the market, but non-commodity outputs (NCO, e.g., landscape aesthetics) so far are public goods with no markets. Agricultural production schemes often provided both outputs by joint production, but with technical progress under prevailing economic pressure, joint production increasingly vanishes by decoupling of commodity from non-commodity production. Simultaneously, by public and political awareness of these shortcomings, there appears a societal need or even demand for some non-commodity outputs of land use, which induces a market potential, and thus, shift towards the status of a commodity outputs. An approach is presented to merge both types of output by defining an indicator of social utility (SUMLU): production schemes are considered with respect to social utility of both commodity and non-commodity outputs. Social utility in this sense includes environmental and economic services as long as society expresses a demand for them. For each combination of parameters at specific frame conditions (e.g., soil and climate properties of a landscape) a production possibility curve can reflect trade-offs between commodity and non-commodity outputs. On each production possibility curve a welfare optimum can be identified expressing the highest achievable value of social utility as a trade-off between CO and NCO production. When applying more parameters, a cluster of welfare optimums is generated. Those clusters can be used for assessing production schemes with respect to sustainable land development. Examples of production possibility functions are given on easy applicable parameters (nitrogen leaching versus gross margin) and on more complex ones (biotic integrity). Social utility, thus allows to evaluate sustainability of land development in a cross-sectoral approach with respect to multifunctionality. (C) 2005 Elsevier Ltd. All rights reserved}, language = {en} }