@article{PradhanKriewaldCostaetal.2020, author = {Pradhan, Prajal and Kriewald, Steffen and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Rybski, Diego and Benton, Tim G. and Fischer, G{\"u}nther and Kropp, J{\"u}rgen}, title = {Urban food systems: how regionalization can contribute to climate change mitigation}, series = {Environmental science \& technology}, volume = {54}, journal = {Environmental science \& technology}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.0c02739}, pages = {10551 -- 10560}, year = {2020}, abstract = {Cities will play a key role in the grand challenge of nourishing a growing global population, because, due to their population density, they set the demand. To ensure that food systems are sustainable, as well as nourishing, one solution often suggested is to shorten their supply chains toward a regional rather than a global basis. While such regional systems may have a range of costs and benefits, we investigate the mitigation potential of regionalized urban food systems by examining the greenhouse gas emissions associated with food transport. Using data on food consumption for 7108 urban administrative units (UAUs), we simulate total transport emissions for both regionalized and globalized supply chains. In regionalized systems, the UAUs' demands are fulfilled by peripheral food production, whereas to simulate global supply chains, food demand is met from an international pool (where the origin can be any location globally). We estimate that regionalized systems could reduce current emissions from food transport. However, because longer supply chains benefit from maximizing comparative advantage, this emission reduction would require closing yield gaps, reducing food waste, shifting toward diversified farming, and consuming seasonal produce. Regionalization of food systems will be an essential component to limit global warming to well below 2 degrees C in the future.}, language = {en} } @article{PutraPradhanKropp2020, author = {Putra, Muhammad Panji Islam Fajar and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {A systematic analysis of Water-Energy-Food security nexus}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {728}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2020.138451}, pages = {9}, year = {2020}, abstract = {Most South Asian countries have challenges in ensuring water, energy, and food (WEF) security, which are often interacting positively or negatively. To address these challenges, the nexus approach provides a framework to identify the interactions of the WEF sectors as an integrated system. However, most nexus studies only qualitatively discuss the interactions between these sectors. This study conducts a systematic analysis of the WEF security nexus in South Asia by using open data sources at the country scale. We analyze interactions between the WEF sectors statistically, defining positive and negative correlations between the WEF security indicators as synergies and trade-offs, respectively. By creating networks of the synergies and trade-offs, we further identify most positively and negatively influencing indicators in the WEF security nexus. We observe a larger share of trade-offs than synergies within the water and energy sectors and a larger share of synergies than trade-offs among the WEF sectors for South Asia. However, these observations vary across the South Asian countries. Our analysis highlights that strategies on promoting sustainable energy and discouraging fossil fuel use could have overall positive effects on the WEF security nexus in the countries. This study provides evidence for considering the WEF security nexus as an integrated system rather than just a combination of three different sectors or securities.}, language = {en} } @article{AtharePradhanKropp2020, author = {Athare, Tushar Ramchandra and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Environmental implications and socioeconomic characterisation of Indian diets}, series = {The science of the total environment}, volume = {737}, journal = {The science of the total environment}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2020.139881}, pages = {9}, year = {2020}, abstract = {India is facing a double burden of malnourishment with co-existences of under- and over-nourishment. Various socioeconomic factors play an essential role in determining dietary choices. Agriculture is one of the major emitters of greenhouse gases (GHGs) in India, contributing 18\% of total emissions. It also consumes freshwater and uses land significantly. We identify eleven Indian diets by applying k-means cluster analysis on latest data from the Indian household consumer expenditure survey. The diets vary in calorie intake [2289-3218 kcal/Consumer Unit (CU)/day] and dietary composition. Estimated embodied GHG emissions in the diets range from 1.36 to 3.62 kg CO2eq./CU/day, land footprint from 4 to 5.45 m(2)/CU/day, whereas water footprint varies from 2.13 to 2.97m(3)/CU/day. Indian diets deviate from a healthy reference diet either with too much or too little consumption of certain food groups. Overall, cereals, sugar, and dairy products intake are higher. In contrast, the consumption of fruits and vegetables, pulses, and nuts is lower than recommended. Our study contributes to deriving required polices for the sustainable transformation of food systems in India to eliminate malnourishment and to reduce the environmental implications of the food systems. (c) 2020 Elsevier B.V. All rights reserved.}, language = {en} } @article{PradhanKropp2020, author = {Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Interplay between diets, health, and climate change}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12093878}, pages = {14}, year = {2020}, abstract = {The world is facing a triple burden of undernourishment, obesity, and environmental impacts from agriculture while nourishing its population. This burden makes sustainable nourishment of the growing population a global challenge. Addressing this challenge requires an understanding of the interplay between diets, health, and associated environmental impacts (e.g., climate change). For this, we identify 11 typical diets that represent dietary habits worldwide for the last five decades. Plant-source foods provide most of all three macronutrients (carbohydrates, protein, and fat) in developing countries. In contrast, animal-source foods provide a majority of protein and fat in developed ones. The identified diets deviate from the recommended healthy diet with either too much (e.g., red meat) or too little (e.g., fruits and vegetables) food and nutrition supply. The total calorie supplies are lower than required for two diets. Sugar consumption is higher than recommended for five diets. Three and five diets consist of larger-than-recommended carbohydrate and fat shares, respectively. Four diets with a large share of animal-source foods exceed the recommended value of red meat. Only two diets consist of at least 400 gm/cap/day of fruits and vegetables while accounting for food waste. Prevalence of undernourishment and underweight dominates in the diets with lower calories. In comparison, a higher prevalence of obesity is observed for diets with higher calories with high shares of sugar, fat, and animal-source foods. However, embodied emissions in the diets do not show a clear relation with calorie supplies and compositions. Two high-calorie diets embody more than 1.5 t CO2eq/cap/yr, and two low-calorie diets embody around 1 t CO2eq/cap/yr. Our analysis highlights that sustainable and healthy diets can serve the purposes of both nourishing the population and, at the same time, reducing the environmental impacts of agriculture.}, language = {en} } @article{WarcholdPradhanKropp2020, author = {Warchold, Anne and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Variations in sustainable development goal interactions}, series = {Sustainable development}, volume = {29}, journal = {Sustainable development}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0968-0802}, doi = {10.1002/sd.2145}, pages = {285 -- 299}, year = {2020}, abstract = {To fulfill the 2030 Agenda, the complexity of sustainable development goal (SDG) interactions needs to be disentangled. However, this understanding is currently limited. We conduct a cross-sectional correlational analysis for 2016 to understand SDG interactions under the entire development spectrum. We apply several correlation methods to classify the interaction as synergy or trade-off and characterize them according to their monotony and linearity. Simultaneously, we analyze SDG interactions considering population, location, income, and regional groups. Our findings highlight that synergies always outweigh trade-offs and linear outweigh non-linear interactions. SDG 1, 5, and 6 are associated with linear synergies, SDG 3, and 7 with non-linear synergies. SDG interactions vary according to a country's income and region along with the gender, age, and location of its population. In summary, to achieve the 2030 Agenda the detected interactions and inequalities across countries need be tracked and leveraged to "leave no one behind."}, language = {en} } @article{HerreroThorntonMasonD'Crozetal.2020, author = {Herrero, Mario and Thornton, Philip K. and Mason-D'Croz, Daniel and Palmer, Jeda and Bodirsky, Benjamin Leon and Pradhan, Prajal and Barrett, Christopher B. and Benton, Tim G. and Hall, Andrew and Pikaar, Ilje and Bogard, Jessica R. and Bonnett, Graham D. and Bryan, Brett A. and Campbell, Bruce M. and Christensen, Svend and Clark, Michael and Fanzo, Jessica and Godde, Cecile M. and Jarvis, Andy and Loboguerrero, Ana Maria and Mathys, Alexander and McIntyre, C. Lynne and Naylor, Rosamond L. and Nelson, Rebecca and Obersteiner, Michael and Parodi, Alejandro and Popp, Alexander and Ricketts, Katie and Smith, Pete and Valin, Hugo and Vermeulen, Sonja J. and Vervoort, Joost and van Wijk, Mark and van Zanten, Hannah H. E. and West, Paul C. and Wood, Stephen A. and Rockstr{\"o}m, Johan}, title = {Articulating the effect of food systems innovation on the Sustainable Development Goals}, series = {The lancet Planetary health}, volume = {5}, journal = {The lancet Planetary health}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {2542-5196}, doi = {10.1016/S2542-5196(20)30277-1}, pages = {E50 -- E62}, year = {2020}, abstract = {Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.}, language = {en} }