@article{WarcholdPradhanThapaetal.2022, author = {Warchold, Anne and Pradhan, Prajal and Thapa, Pratibha and Putra, Muhammad Panji Islam Fajar and Kropp, J{\"u}rgen}, title = {Building a unified sustainable development goal database}, series = {Sustainable development}, journal = {Sustainable development}, publisher = {Wiley}, address = {Hoboken}, issn = {0968-0802}, doi = {10.1002/sd.2316}, pages = {16}, year = {2022}, abstract = {The 2020s are an essential decade for achieving the 2030 Agenda and its Sustainable Development Goals (SDGs). For this, SDG research needs to provide evidence that can be translated into concrete actions. However, studies use different SDG data, resulting in incomparable findings. Researchers primarily use SDG databases provided by the United Nations (UN), the World Bank Group (WBG), and the Bertelsmann Stiftung \& Sustainable Development Solutions Network (BE-SDSN). We compile these databases into one unified SDG database and examine the effects of the data selection on our understanding of SDG interactions. Among the databases, we observed more different than similar SDG interactions. Differences in synergies and trade-offs mainly occur for SDGs that are environmentally oriented. Due to the increased data availability, the unified SDG database offers a more nuanced and reliable view of SDG interactions. Thus, the SDG data selection may lead to diverse findings, fostering actions that might neglect or exacerbate trade-offs.}, language = {en} } @article{AtharePradhanSinghetal.2022, author = {Athare, Tushar Ramchandra and Pradhan, Prajal and Singh, S. R. K. and Kropp, J{\"u}rgen}, title = {India consists of multiple food systems with scoioeconomic and environmental variations}, series = {PLOS ONE / Public Library of Science}, volume = {17}, journal = {PLOS ONE / Public Library of Science}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0270342}, pages = {18}, year = {2022}, abstract = {Agriculture in India accounts for 18\% of greenhouse gas (GHG) emissions and uses significant land and water. Various socioeconomic factors and food subsidies influence diets in India. Indian food systems face the challenge of sustainably nourishing the 1.3 billion population. However, existing studies focus on a few food system components, and holistic analysis is still missing. We identify Indian food systems covering six food system components: food consumption, production, processing, policy, environmental footprints, and socioeconomic factors from the latest Indian household consumer expenditure survey. We identify 10 Indian food systems using k-means cluster analysis on 15 food system indicators belonging to the six components. Based on the major source of calorie intake, we classify the ten food systems into production-based (3), subsidy-based (3), and market-based (4) food systems. Home-produced and subsidized food contribute up to 2000 kcal/consumer unit (CU)/day and 1651 kcal/CU/day, respectively, in these food systems. The calorie intake of 2158 to 3530 kcal/CU/day in the food systems reveals issues of malnutrition in India. Environmental footprints are commensurate with calorie intake in the food systems. Embodied GHG, land footprint, and water footprint estimates range from 1.30 to 2.19 kg CO(2)eq/CU/day, 3.89 to 6.04 m(2)/CU/day, and 2.02 to 3.16 m(3)/CU/day, respectively. Our study provides a holistic understanding of Indian food systems for targeted nutritional interventions on household malnutrition in India while also protecting planetary health.}, language = {en} } @article{PradhanKriewaldCostaetal.2020, author = {Pradhan, Prajal and Kriewald, Steffen and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Rybski, Diego and Benton, Tim G. and Fischer, G{\"u}nther and Kropp, J{\"u}rgen}, title = {Urban food systems: how regionalization can contribute to climate change mitigation}, series = {Environmental science \& technology}, volume = {54}, journal = {Environmental science \& technology}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.0c02739}, pages = {10551 -- 10560}, year = {2020}, abstract = {Cities will play a key role in the grand challenge of nourishing a growing global population, because, due to their population density, they set the demand. To ensure that food systems are sustainable, as well as nourishing, one solution often suggested is to shorten their supply chains toward a regional rather than a global basis. While such regional systems may have a range of costs and benefits, we investigate the mitigation potential of regionalized urban food systems by examining the greenhouse gas emissions associated with food transport. Using data on food consumption for 7108 urban administrative units (UAUs), we simulate total transport emissions for both regionalized and globalized supply chains. In regionalized systems, the UAUs' demands are fulfilled by peripheral food production, whereas to simulate global supply chains, food demand is met from an international pool (where the origin can be any location globally). We estimate that regionalized systems could reduce current emissions from food transport. However, because longer supply chains benefit from maximizing comparative advantage, this emission reduction would require closing yield gaps, reducing food waste, shifting toward diversified farming, and consuming seasonal produce. Regionalization of food systems will be an essential component to limit global warming to well below 2 degrees C in the future.}, language = {en} } @article{PutraPradhanKropp2020, author = {Putra, Muhammad Panji Islam Fajar and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {A systematic analysis of Water-Energy-Food security nexus}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {728}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2020.138451}, pages = {9}, year = {2020}, abstract = {Most South Asian countries have challenges in ensuring water, energy, and food (WEF) security, which are often interacting positively or negatively. To address these challenges, the nexus approach provides a framework to identify the interactions of the WEF sectors as an integrated system. However, most nexus studies only qualitatively discuss the interactions between these sectors. This study conducts a systematic analysis of the WEF security nexus in South Asia by using open data sources at the country scale. We analyze interactions between the WEF sectors statistically, defining positive and negative correlations between the WEF security indicators as synergies and trade-offs, respectively. By creating networks of the synergies and trade-offs, we further identify most positively and negatively influencing indicators in the WEF security nexus. We observe a larger share of trade-offs than synergies within the water and energy sectors and a larger share of synergies than trade-offs among the WEF sectors for South Asia. However, these observations vary across the South Asian countries. Our analysis highlights that strategies on promoting sustainable energy and discouraging fossil fuel use could have overall positive effects on the WEF security nexus in the countries. This study provides evidence for considering the WEF security nexus as an integrated system rather than just a combination of three different sectors or securities.}, language = {en} } @article{AtharePradhanKropp2020, author = {Athare, Tushar Ramchandra and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Environmental implications and socioeconomic characterisation of Indian diets}, series = {The science of the total environment}, volume = {737}, journal = {The science of the total environment}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2020.139881}, pages = {9}, year = {2020}, abstract = {India is facing a double burden of malnourishment with co-existences of under- and over-nourishment. Various socioeconomic factors play an essential role in determining dietary choices. Agriculture is one of the major emitters of greenhouse gases (GHGs) in India, contributing 18\% of total emissions. It also consumes freshwater and uses land significantly. We identify eleven Indian diets by applying k-means cluster analysis on latest data from the Indian household consumer expenditure survey. The diets vary in calorie intake [2289-3218 kcal/Consumer Unit (CU)/day] and dietary composition. Estimated embodied GHG emissions in the diets range from 1.36 to 3.62 kg CO2eq./CU/day, land footprint from 4 to 5.45 m(2)/CU/day, whereas water footprint varies from 2.13 to 2.97m(3)/CU/day. Indian diets deviate from a healthy reference diet either with too much or too little consumption of certain food groups. Overall, cereals, sugar, and dairy products intake are higher. In contrast, the consumption of fruits and vegetables, pulses, and nuts is lower than recommended. Our study contributes to deriving required polices for the sustainable transformation of food systems in India to eliminate malnourishment and to reduce the environmental implications of the food systems. (c) 2020 Elsevier B.V. All rights reserved.}, language = {en} } @article{PradhanKropp2020, author = {Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Interplay between diets, health, and climate change}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12093878}, pages = {14}, year = {2020}, abstract = {The world is facing a triple burden of undernourishment, obesity, and environmental impacts from agriculture while nourishing its population. This burden makes sustainable nourishment of the growing population a global challenge. Addressing this challenge requires an understanding of the interplay between diets, health, and associated environmental impacts (e.g., climate change). For this, we identify 11 typical diets that represent dietary habits worldwide for the last five decades. Plant-source foods provide most of all three macronutrients (carbohydrates, protein, and fat) in developing countries. In contrast, animal-source foods provide a majority of protein and fat in developed ones. The identified diets deviate from the recommended healthy diet with either too much (e.g., red meat) or too little (e.g., fruits and vegetables) food and nutrition supply. The total calorie supplies are lower than required for two diets. Sugar consumption is higher than recommended for five diets. Three and five diets consist of larger-than-recommended carbohydrate and fat shares, respectively. Four diets with a large share of animal-source foods exceed the recommended value of red meat. Only two diets consist of at least 400 gm/cap/day of fruits and vegetables while accounting for food waste. Prevalence of undernourishment and underweight dominates in the diets with lower calories. In comparison, a higher prevalence of obesity is observed for diets with higher calories with high shares of sugar, fat, and animal-source foods. However, embodied emissions in the diets do not show a clear relation with calorie supplies and compositions. Two high-calorie diets embody more than 1.5 t CO2eq/cap/yr, and two low-calorie diets embody around 1 t CO2eq/cap/yr. Our analysis highlights that sustainable and healthy diets can serve the purposes of both nourishing the population and, at the same time, reducing the environmental impacts of agriculture.}, language = {en} } @article{WarcholdPradhanKropp2020, author = {Warchold, Anne and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Variations in sustainable development goal interactions}, series = {Sustainable development}, volume = {29}, journal = {Sustainable development}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0968-0802}, doi = {10.1002/sd.2145}, pages = {285 -- 299}, year = {2020}, abstract = {To fulfill the 2030 Agenda, the complexity of sustainable development goal (SDG) interactions needs to be disentangled. However, this understanding is currently limited. We conduct a cross-sectional correlational analysis for 2016 to understand SDG interactions under the entire development spectrum. We apply several correlation methods to classify the interaction as synergy or trade-off and characterize them according to their monotony and linearity. Simultaneously, we analyze SDG interactions considering population, location, income, and regional groups. Our findings highlight that synergies always outweigh trade-offs and linear outweigh non-linear interactions. SDG 1, 5, and 6 are associated with linear synergies, SDG 3, and 7 with non-linear synergies. SDG interactions vary according to a country's income and region along with the gender, age, and location of its population. In summary, to achieve the 2030 Agenda the detected interactions and inequalities across countries need be tracked and leveraged to "leave no one behind."}, language = {en} } @article{HerreroThorntonMasonD'Crozetal.2020, author = {Herrero, Mario and Thornton, Philip K. and Mason-D'Croz, Daniel and Palmer, Jeda and Bodirsky, Benjamin Leon and Pradhan, Prajal and Barrett, Christopher B. and Benton, Tim G. and Hall, Andrew and Pikaar, Ilje and Bogard, Jessica R. and Bonnett, Graham D. and Bryan, Brett A. and Campbell, Bruce M. and Christensen, Svend and Clark, Michael and Fanzo, Jessica and Godde, Cecile M. and Jarvis, Andy and Loboguerrero, Ana Maria and Mathys, Alexander and McIntyre, C. Lynne and Naylor, Rosamond L. and Nelson, Rebecca and Obersteiner, Michael and Parodi, Alejandro and Popp, Alexander and Ricketts, Katie and Smith, Pete and Valin, Hugo and Vermeulen, Sonja J. and Vervoort, Joost and van Wijk, Mark and van Zanten, Hannah H. E. and West, Paul C. and Wood, Stephen A. and Rockstr{\"o}m, Johan}, title = {Articulating the effect of food systems innovation on the Sustainable Development Goals}, series = {The lancet Planetary health}, volume = {5}, journal = {The lancet Planetary health}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {2542-5196}, doi = {10.1016/S2542-5196(20)30277-1}, pages = {E50 -- E62}, year = {2020}, abstract = {Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.}, language = {en} } @article{LandholmPradhanKropp2019, author = {Landholm, David M. and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Diverging forest land use dynamics induced by armed conflict across the tropics}, series = {Global environmental change : human and policy dimensions}, volume = {56}, journal = {Global environmental change : human and policy dimensions}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-3780}, doi = {10.1016/j.gloenvcha.2019.03.006}, pages = {86 -- 94}, year = {2019}, abstract = {Armed conflicts trigger region-specific mechanisms that affect land use change. Deforestation is presented as one of the most common negative environmental impacts resulting from armed conflicts, with relevant consequences in terms of greenhouse gas emissions and loss of ecosystem services. However, the impact of armed conflict on forests is complex and may simultaneously lead to positive and negative environmental outcomes, i.e. forest regrowth and deforestation, in different regions even within a country. We investigate the impact that armed conflict exerted over forest dynamics at different spatial scales in Colombia and for the global tropics during the period 1992-2015. Through the analysis of its internally displaced population (departures) our results suggest that, albeit finding forest regrowth in some municipalities, the Colombian conflict predominantly exerted a negative impact on its forests. A further examination of georeferenced fighting locations in Colombia and across the globe shows that conflict areas were 8 and 4 times more likely to undergo deforestation, respectively, in the following years in relation to average deforestation rates. This study represents a municipality level, long-term spatial analysis of the diverging effects the Colombian conflict exerted over its forest dynamics over two distinct periods of increasing and decreasing conflict intensity. Moreover, it presents the first quantified estimate of conflict's negative impact on forest ecosystems across the globe. The relationship between armed conflict and land use change is of global relevance given the recent increase of armed conflicts across the world and the importance of a possible exacerbation of armed conflicts and migration as climate change impacts increase.}, language = {en} } @article{PradhanCostaRybskietal.2017, author = {Pradhan, Prajal and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Rybski, Diego and Lucht, Wolfgang and Kropp, J{\"u}rgen}, title = {A Systematic Study of Sustainable Development Goal (SDG) Interactions}, series = {Earths Future}, volume = {5}, journal = {Earths Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000632}, pages = {1169 -- 1179}, year = {2017}, abstract = {Sustainable development goals (SDGs) have set the 2030 agenda to transform our world by tackling multiple challenges humankind is facing to ensure well-being, economic prosperity, and environmental protection. In contrast to conventional development agendas focusing on a restricted set of dimensions, the SDGs provide a holistic and multidimensional view on development. Hence, interactions among the SDGs may cause diverging results. To analyze the SDG interactions we systematize the identification of synergies and trade-offs using official SDG indicator data for 227 countries. A significant positive correlation between a pair of SDG indicators is classified as a synergy while a significant negative correlation is classified as a trade-off. We rank synergies and trade-offs between SDGs pairs on global and country scales in order to identify the most frequent SDG interactions. For a given SDG, positive correlations between indicator pairs were found to outweigh the negative ones in most countries. Among SDGs the positive and negative correlations between indicator pairs allowed for the identification of particular global patterns. SDG 1 (No poverty) has synergetic relationship with most of the other goals, whereas SDG 12 (Responsible consumption and production) is the goal most commonly associated with trade-offs. The attainment of the SDG agenda will greatly depend on whether the identified synergies among the goals can be leveraged. In addition, the highlighted trade-offs, which constitute obstacles in achieving the SDGs, need to be negotiated and made structurally nonobstructive by deeper changes in the current strategies.}, language = {en} } @article{KriewaldPradhanCostaetal.2019, author = {Kriewald, Steffen and Pradhan, Prajal and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Ros, Anselmo Garcia Cantu and Kropp, J{\"u}rgen}, title = {Hungry cities: how local food self-sufficiency relates to climate change, diets, and urbanisation}, series = {Environmental research letters}, volume = {14}, journal = {Environmental research letters}, number = {9}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ab2d56}, pages = {9}, year = {2019}, abstract = {Using a newly developed model approach and combining it with remote sensing, population, and climate data, first insights are provided into how local diets, urbanisation, and climate change relates to local urban food self-sufficiency. In plain terms, by utilizing the global peri-urban (PU) food production potential approximately lbn urban residents (30\% of global urban population) can be locally nourished, whereby further urbanisation is by far the largest pressure factor on PU agriculture, followed by a change of diets, and climate change. A simple global food transport model which optimizes transport and neglects differences in local emission intensities indicates that CO2 emissions related to food transport can be reduced by a factor of 10.}, language = {en} } @article{LandholmPradhanWegmannetal.2019, author = {Landholm, David M. and Pradhan, Prajal and Wegmann, Peter and Romero Sanchez, Miguel Antonio and Suarez Salazar, Juan Carlos and Kropp, J{\"u}rgen}, title = {Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caqueta}, series = {Environmental research letters}, volume = {14}, journal = {Environmental research letters}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ab3db6}, pages = {12}, year = {2019}, abstract = {Colombia's agriculture, forestry and other land use sector accounts for nearly half of its total greenhouse gas (GHG) emissions. The importance of smallholder deforestation is comparatively high in relation to its regional counterparts, and livestock agriculture represents the largest driver of primary forest depletion. Silvopastoral systems (SPSs) are presented as agroecological solutions that synergistically enhance livestock productivity, improve local farmers' livelihoods and hold the potential to reduce pressure on forest conversion. The department of Caquet{\´a} represents Colombia's most important deforestation hotspot. Targeting smallholder livestock farms through survey data, in this work we investigate the GHG mitigation potential of implementing SPSs for smallholder farms in this region. Specifically, we assess whether the carbon sequestration taking place in the soil and biomass of SPSs is sufficient to offset the per-hectare increase in livestock GHG emissions resulting from higher stocking rates. To address these questions we use data on livestock population characteristics and historic land cover changes reported from a survey covering 158 farms and model the carbon sequestration occurring in three different scenarios of progressively-increased SPS complexity using the CO2 fix model. We find that, even with moderate tree planting densities, the implementation of SPSs can reduce GHG emissions by 2.6 Mg CO2e ha-1 yr-1 in relation to current practices, while increasing agriculture productivity and contributing to the restoration of severely degraded landscapes.}, language = {en} } @article{GanzenmuellerPradhanKropp2018, author = {Ganzenm{\"u}ller, Raphael and Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Sectoral performance analysis of national greenhouse gas emission inventories by means of neural networks}, series = {Science of The Total Environment}, journal = {Science of The Total Environment}, number = {656}, publisher = {Elsevier}, doi = {10.1016/j.scitotenv.2018.11.311}, pages = {80 -- 89}, year = {2018}, abstract = {Annual greenhouse gas emissions have increased more than threefold between 1950 and 2014, posing a major threat to the integrity of the entire earth system and subsequently to humankind. Consequently, roadmaps towards low-carbon pathways are urgently needed. Our study contributes to a more detailed understanding of the dynamics of country based emission patterns and uses them to discuss prospective low-carbon pathways for countries. As availability of databases on sectoral emissions substantially increased, we employ machine learning techniques to classify emission features and pathways. By doing so, 18 representative emission patterns are derived. Overall emissions from seven sectors and for 167 countries covering the time span from 1950 to 2014 have been used in the analyses. The following significant trends can be observed: a) increasing per capita emissions due to growing fossil fuel use in many parts of the world, b) a decline in per capita emissions in some countries, and c) a shift in the emission shares, i.e., a reduction of agricultural and land use contributions in certain regions. Using the emission patterns, their dynamics, and best performing countries as role models, we show the possibility for gaining a decent human development without significantly increasing per capita emissions.}, language = {en} } @article{HicPradhanRybskietal.2016, author = {Hic, Ceren and Pradhan, Prajal and Rybski, Diego and Kropp, J{\"u}rgen}, title = {Food Surplus and Its Climate Burdens}, series = {Geological Society of America bulletin}, volume = {50}, journal = {Geological Society of America bulletin}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.5b05088}, pages = {4269 -- 4277}, year = {2016}, abstract = {Avoiding food loss and waste may counteract the increasing food demand and reduce greenhouse gas (GHG) emissions from the agricultural sector. This is crucial because of limited options available to increase food production. In the year 2010, food availability was 20\% higher than was required on a global scale. Thus, a more sustainable food production and adjusted consumption would have positive environmental effects. This study provides a systematic approach to estimate consumer level food waste on a country scale and globally, based on food availability and requirements. The food requirement estimation considers demographic development, body weights, and physical activity levels. Surplus between food availability and requirements of a given country is considered as food waste. The global food requirement changed from 2,300 kcal/cap/day to 2,400 kcal/cap/day during the last 50 years, while food surplus grew from 310 kcal/cap/day to 510 kcal/cap/day. Similarly, GHG emissions related to the food surplus increased from 130 Mt CO2eq/yr to 530 Mt CO2eq/yr, an increase of more than 300\%. Moreover, the global food surplus may increase up to 850 kcal/cap/day, while the total food requirement will increase only by 2\%-20\% by 2050. Consequently, GHG emissions associated with the food waste may also increase tremendously to 1.9-2.5 Gt CO2eq/yr.}, language = {en} } @article{BozzoBhaleraoPradhanetal.2016, author = {Bozzo, Enrico and Bhalerao, V. and Pradhan, Prajal and Tomsick, J. and Romano, Patrizia and Ferrigno, Carlo and Chaty, S. and Oskinova, Lida and Manousakis, A. and Walter, R. and Falanga, M. and Campana, S. and Stella, L. and Ramolla, M. and Chini, R.}, title = {Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst}, series = {Journal of geophysical research : Earth surface}, volume = {596}, journal = {Journal of geophysical research : Earth surface}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629311}, pages = {12}, year = {2016}, abstract = {In this paper we report on a long multi-wavelength observational campaign of the supergiant fast X-ray transient prototype IGR J17544-2619. A 150 ks-long observation was carried out simultaneously with XMM-Newton and NuSTAR, catching the source in an initial faint X-ray state and then undergoing a bright X-ray outburst lasting approximately 7 ks. We studied the spectral variability during outburst and quiescence by using a thermal and bulk Comptonization model that is typically adopted to describe the X-ray spectral energy distribution of young pulsars in high mass X-ray binaries. Although the statistics of the collected X-ray data were relatively high, we could neither confirm the presence of a cyclotron line in the broad-band spectrum of the source (0.5-40 keV), nor detect any of the previously reported tentative detections of the source spin period. The monitoring carried out with Swift/XRT during the same orbit of the system observed by XMM-Newton and NuSTAR revealed that the source remained in a low emission state for most of the time, in agreement with the known property of all supergiant fast X-ray transients being significantly sub-luminous compared to other supergiant X-ray binaries. Optical and infrared observations were carried out for a total of a few thousand seconds during the quiescence state of the source detected by XMM-Newton and NuSTAR. The measured optical and infrared magnitudes were slightly lower than previous values reported in the literature, but compatible with the known micro-variability of supergiant stars. UV observations obtained with the UVOT telescope on-board Swift did not reveal significant changes in the magnitude of the source in this energy domain compared to previously reported values.}, language = {en} } @misc{PradhanFischerVelthuizenetal.2015, author = {Pradhan, Prajal and Fischer, G{\"u}nther and Velthuizen, Harrij van and Reusser, Dominik Edwin and Kropp, J{\"u}rgen}, title = {Closing yield gaps}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {491}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408105}, pages = {18}, year = {2015}, abstract = {Global food production needs to be increased by 60-110\% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24\% and 80\% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73\%, P2O5-fertilizer by 22-46\%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented.}, language = {en} } @article{PradhanLuedekeReusseretal.2014, author = {Pradhan, Prajal and L{\"u}deke, Matthias K. B. and Reusser, Dominik Edwin and Kropp, J{\"u}rgen}, title = {Food self-sufficiency across scales: How local can we go?}, series = {Environmental science \& technology}, volume = {48}, journal = {Environmental science \& technology}, number = {16}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/es5005939}, pages = {9463 -- 9470}, year = {2014}, abstract = {This study explores the potential for regions to shift to a local food supply using food self-sufficiency (FSS) as an indicator. We considered a region food self-sufficient when its total calorie production is enough to meet its demand. For future scenarios, we considered population growth, dietary changes, improved feed conversion efficiency, climate change, and crop yield increments. Starting at the 5' resolution, we investigated FSS from the lowest administrative levels to continents. Globally, about 1.9 billion people are self-sufficient within their 5' grid, while about 1 billion people from Asia and Africa require cross-continental agricultural trade in 2000. By closing yield gaps, these regions can achieve FSS, which also reduces international trade and increases a self-sufficient population in a 5' grid to 2.9 billion. The number of people depending on international trade will vary between 1.5 and 6 billion by 2050. Climate change may increase the need for international agricultural trade by 4\% to 16\%.}, language = {en} } @article{PradhanReusserKropp2013, author = {Pradhan, Prajal and Reusser, Dominik Edwin and Kropp, J{\"u}rgen}, title = {Embodied greenhouse gas emissions in Diets}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0062228}, pages = {8}, year = {2013}, abstract = {Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO2eq./yr by 2050.}, language = {en} } @article{PradhanLuedekeRoesseretal.2013, author = {Pradhan, Prajal and L{\"u}deke, Matthias K. B. and R{\"o}sser, Dominik E. and Kropp, J{\"u}rgen}, title = {Embodied crop calories in animal products}, series = {Environmental research letters}, volume = {8}, journal = {Environmental research letters}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/8/4/044044}, pages = {10}, year = {2013}, abstract = {Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40\% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100\% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20\% of the livestock raising areas worldwide and greater than 10 for another 20\% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these regions.}, language = {en} } @phdthesis{Pradhan2015, author = {Pradhan, Prajal}, title = {Food demand and supply under global change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77849}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 141}, year = {2015}, abstract = {Anthropogenic activities have transformed the Earth's environment, not only on local level, but on the planetary-scale causing global change. Besides industrialization, agriculture is a major driver of global change. This change in turn impairs the agriculture sector, reducing crop yields namely due to soil degradation, water scarcity, and climate change. However, this is a more complex issue than it appears. Crop yields can be increased by use of agrochemicals and fertilizers which are mainly produced by fossil energy. This is important to meet the increasing food demand driven by global demographic change, which is further accelerated by changes in regional lifestyles. In this dissertation, we attempt to address this complex problem exploring agricultural potential globally but on a local scale. For this, we considered the influence of lifestyle changes (dietary patterns) as well as technological progress and their effects on climate change, mainly greenhouse gas (GHG) emissions. Furthermore, we examined options for optimizing crop yields in the current cultivated land with the current cropping patterns by closing yield gaps. Using this, we investigated in a five-minute resolution the extent to which food demand can be met locally, and/or by regional and/or global trade. Globally, food consumption habits are shifting towards calorie rich diets. Due to dietary shifts combined with population growth, the global food demand is expected to increase by 60-110\% between 2005 and 2050. Hence, one of the challenges to global sustainability is to meet the growing food demand, while at the same time, reducing agricultural inputs and environmental consequences. In order to address the above problem, we used several freely available datasets and applied multiple interconnected analytical approaches that include artificial neural network, scenario analysis, data aggregation and harmonization, downscaling algorithm, and cross-scale analysis. Globally, we identified sixteen dietary patterns between 1961 and 2007 with food intakes ranging from 1,870 to 3,400 kcal/cap/day. These dietary patterns also reflected changing dietary habits to meat rich diets worldwide. Due to the large share of animal products, very high calorie diets that are common in the developed world, exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day. This is higher than total per capita emissions of 1.4-4.5 kg CO2eq./day associated with low and moderate calorie diets that are common in developing countries. Currently, 40\% of the global crop calories are fed to livestock and the feed calorie use is four times the produced animal calories. However, these values vary from less than 1 kcal to greater 10 kcal around the world. On the local and national scale, we found that the local and national food production could meet demand of 1.9 and 4.4 billion people in 2000, respectively. However, 1 billion people from Asia and Africa require intercontinental agricultural trade to meet their food demand. Nevertheless, these regions can become food self-sufficient by closing yield gaps that require location specific inputs and agricultural management strategies. Such strategies include: fertilizers, pesticides, soil and land improvement, management targeted on mitigating climate induced yield variability, and improving market accessibility. However, closing yield gaps in particular requires global N-fertilizer application to increase by 45-73\%, P2O5 by 22-46\%, and K2O by 2-3 times compare to 2010. Considering population growth, we found that the global agricultural GHG emissions will approach 7 Gt CO2eq./yr by 2050, while the global livestock feed demand will remain similar to 2000. This changes tremendously when diet shifts are also taken into account, resulting in GHG emissions of 20 Gt CO2eq./yr and an increase of 1.3 times in the crop-based feed demand between 2000 and 2050. However, when population growth, diet shifts, and technological progress by 2050 were considered, GHG emissions can be reduced to 14 Gt CO2eq./yr and the feed demand to nearly 1.8 times compare to that in 2000. Additionally, our findings shows that based on the progress made in closing yield gaps, the number of people depending on international trade can vary between 1.5 and 6 billion by 2050. In medium term, this requires additional fossil energy. Furthermore, climate change, affecting crop yields, will increase the need for international agricultural trade by 4\% to 16\%. In summary, three general conclusions are drawn from this dissertation. First, changing dietary patterns will significantly increase crop demand, agricultural GHG emissions, and international food trade in the future when compared to population growth only. Second, such increments can be reduced by technology transfer and technological progress that will enhance crop yields, decrease agricultural emission intensities, and increase livestock feed conversion efficiencies. Moreover, international trade dependency can be lowered by consuming local and regional food products, by producing diverse types of food, and by closing yield gaps. Third, location specific inputs and management options are required to close yield gaps. Sustainability of such inputs and management largely depends on which options are chosen and how they are implemented. However, while every cultivated land may not need to attain its potential yields to enable food security, closing yield gaps only may not be enough to achieve food self-sufficiency in some regions. Hence, a combination of sustainable implementations of agricultural intensification, expansion, and trade as well as shifting dietary habits towards a lower share of animal products is required to feed the growing population.}, language = {en} }