@misc{BeckerRiethmuellerSeitzetal.2018, author = {Becker, Katrin Anne and Riethmueller, Joachim and Seitz, Aaron P. and Gardner, Aaron and Boudreau, Ryan and Kamler, Markus and Kleuser, Burkhard and Schuchman, Edward and Caldwell, Charles C. and Edwards, Michael J. and Grassme, Heike and Brodlie, Malcolm and Gulbins, Erich}, title = {Sphingolipids as targets for inhalation treatment of cystic fibrosis}, series = {Advanced drug delivery reviews}, volume = {133}, journal = {Advanced drug delivery reviews}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-409X}, doi = {10.1016/j.addr.2018.04.015}, pages = {66 -- 75}, year = {2018}, abstract = {Studies over the past several years have demonstrated the important role of sphingolipids in cystic fibrosis (CF), chronic obstructive pulmonary disease and acute lung injury. Ceramide is increased in airway epithelial cells and alveolar macrophages of CF mice and humans, while sphingosine is dramatically decreased. This increase in ceramide results in chronic inflammation, increased death of epithelial cells, release of DNA into the bronchial lumen and thereby an impairment of mucociliary clearance; while the lack of sphingosine in airway epithelial cells causes high infection susceptibility in CF mice and possibly patients. The increase in ceramide mediates an ectopic expression of beta 1-integrins in the luminal membrane of CF epithelial cells, which results, via an unknown mechanism, in a down-regulation of acid ceramidase. It is predominantly this down-regulation of acid ceramidase that results in the imbalance of ceramide and sphingosine in CF cells. Correction of ceramide and sphingosine levels can be achieved by inhalation of functional acid sphingomyelinase inhibitors, recombinant acid ceramidase or by normalization of beta 1-integrin expression and subsequent re-expression of endogenous acid ceramidase. These treatments correct pulmonary inflammation and prevent or treat, respectively, acute and chronic pulmonary infections in CF mice with Staphylococcus aureus and mucoid or non-mucoid Pseudomonas aeruginosa. Inhalation of sphingosine corrects sphingosine levels only and seems to mainly act against the infection. Many antidepressants are functional inhibitors of the acid sphingomyelinase and were designed for systemic treatment of major depression. These drugs could be repurposed to treat CF by inhalation.}, language = {en} } @article{BeckmannKadowSchumacheretal.2018, author = {Beckmann, Nadine and Kadow, Stephanie and Schumacher, Fabian and Goethert, Joachim R. and Kesper, Stefanie and Draeger, Annette and Schulz-Schaeffer, Walter J. and Wang, Jiang and Becker, Jan U. and Kramer, Melanie and Kuehn, Claudine and Kleuser, Burkhard and Becker, Katrin Anne and Gulbins, Erich and Carpinteiro, Alexander}, title = {Pathological manifestations of Farber disease in a new mouse model}, series = {Biological chemistry}, volume = {399}, journal = {Biological chemistry}, number = {10}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2018-0170}, pages = {1183 -- 1202}, year = {2018}, abstract = {Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.}, language = {en} } @article{ReichelRheinHofmannetal.2018, author = {Reichel, Martin and Rhein, Cosima and Hofmann, Lena M. and Monti, Juliana and Japtok, Lukasz and Langgartner, Dominik and F{\"u}chsl, Andrea M. and Kleuser, Burkhard and Gulbins, Erich and Hellerbrand, Claus and Reber, Stefan O. and Kornhuber, Johannes}, title = {Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation}, series = {Frontiers in Psychiatry}, volume = {9}, journal = {Frontiers in Psychiatry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-0640}, doi = {10.3389/fpsyt.2018.00496}, pages = {8}, year = {2018}, abstract = {Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28\% (P = 0.006) and secretory Asm activity by 47\% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40\% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.}, language = {en} } @article{GulbinsSchumacherBeckeretal.2018, author = {Gulbins, Anne and Schumacher, Fabian and Becker, Katrin Anne and Wilker, Barbara and Soddemann, Matthias and Boldrin, Francesco and M{\"u}ller, Christian P. and Edwards, Michael J. and Goodman, Michael and Caldwell, Charles C. and Kleuser, Burkhard and Kornhuber, Johannes and Szabo, Ildiko and Gulbins, Erich}, title = {Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide}, series = {Molecular psychiatry}, volume = {23}, journal = {Molecular psychiatry}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1359-4184}, doi = {10.1038/s41380-018-0090-9}, pages = {2324 -- 2346}, year = {2018}, abstract = {Major depressive disorder (MDD) is a common and severe disease characterized by mood changes, somatic alterations, and often suicide. MDD is treated with antidepressants, but the molecular mechanism of their action is unknown. We found that widely used antidepressants such as amitriptyline and fluoxetine induce autophagy in hippocampal neurons via the slow accumulation of sphingomyelin in lysosomes and Golgi membranes and of ceramide in the endoplasmic reticulum (ER). ER ceramide stimulates phosphatase 2A and thereby the autophagy proteins Ulk, Beclin, Vps34/Phosphatidylinositol 3-kinase, p62, and Lc3B. Although treatment with amitriptyline or fluoxetine requires at least 12 days to achieve sphingomyelin accumulation and the subsequent biochemical and cellular changes, direct inhibition of sphingomyelin synthases with tricyclodecan-9-yl-xanthogenate (D609) results in rapid (within 3 days) accumulation of ceramide in the ER, activation of autophagy, and reversal of biochemical and behavioral signs of stress-induced MDD. Inhibition of Beclin blocks the antidepressive effects of amitriptyline and D609 and induces cellular and behavioral changes typical of MDD. These findings identify sphingolipid-controlled autophagy as an important target for antidepressive treatment methods and provide a rationale for the development of novel antidepressants that act within a few days.}, language = {en} } @misc{ReichelRheinHofmannetal.2018, author = {Reichel, Martin and Rhein, Cosima and Hofmann, Lena M. and Monti, Juliana and Japtok, Lukasz and Langgartner, Dominik and F{\"u}chsl, Andrea M. and Kleuser, Burkhard and Gulbins, Erich and Hellerbrand, Claus and Reber, Stefan O. and Kornhuber, Johannes}, title = {Chronic psychosocial stress in mice is associated with increased acid sphingomyelinase activity in liver and serum and with hepatic C16:0-ceramide accumulation}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1120}, issn = {1866-8372}, doi = {10.25932/publishup-44624}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446241}, pages = {10}, year = {2018}, abstract = {Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28\% (P = 0.006) and secretory Asm activity by 47\% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40\% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.}, language = {en} }