@article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @article{DiekmannAndresBeckeretal.2019, author = {Diekmann, Martin and Andres, Christian and Becker, Thomas and Bennie, Jonathan and Blueml, Volker and Bullock, James M. and Culmsee, Heike and Fanigliulo, Miriam and Hahn, Annett and Heinken, Thilo and Leuschner, Christoph and Luka, Stefanie and Meissner, Justus and M{\"u}ller, Josef and Newton, Adrian and Peppler-Lisbach, Cord and Rosenthal, Gert and van den Berg, Leon J. L. and Vergeer, Philippine and Wesche, Karsten}, title = {Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe}, series = {Journal of vegetation science}, volume = {30}, journal = {Journal of vegetation science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12727}, pages = {187 -- 202}, year = {2019}, abstract = {Questions Has plant species richness in semi-natural grasslands changed over recent decades? Do the temporal trends of habitat specialists differ from those of habitat generalists? Has there been a homogenization of the grassland vegetation? Location Different regions in Germany and the UK. Methods We conducted a formal meta-analysis of re-survey vegetation studies of semi-natural grasslands. In total, 23 data sets were compiled, spanning up to 75 years between the surveys, including 13 data sets from wet grasslands, six from dry grasslands and four from other grassland types. Edaphic conditions were assessed using mean Ellenberg indicator values for soil moisture, nitrogen and pH. Changes in species richness and environmental variables were evaluated using response ratios. Results In most wet grasslands, total species richness declined over time, while habitat specialists almost completely vanished. The number of species losses increased with increasing time between the surveys and were associated with a strong decrease in soil moisture and higher soil nutrient contents. Wet grasslands in nature reserves showed no such changes or even opposite trends. In dry grasslands and other grassland types, total species richness did not consistently change, but the number or proportions of habitat specialists declined. There were also considerable changes in species composition, especially in wet grasslands that often have been converted into intensively managed, highly productive meadows or pastures. We did not find a general homogenization of the vegetation in any of the grassland types. Conclusions The results document the widespread deterioration of semi-natural grasslands, especially of those types that can easily be transformed to high production grasslands. The main causes for the loss of grassland specialists are changed management in combination with increased fertilization and nitrogen deposition. Dry grasslands are most resistant to change, but also show a long-term trend towards an increase in more mesotrophic species.}, language = {en} } @article{SchleuningTemplinHuamanetal.2011, author = {Schleuning, Matthias and Templin, Mathias and Huaman, Vicky and Vadillo, Giovana P. and Becker, Thomas and Durka, Walter and Fischer, Markus and Matthies, Diethart}, title = {Effects of inbreeding, outbreeding, and supplemental pollen on the reproduction of a hummingbird-pollinated clonal amazonian herb}, series = {Biotropica : a publication of the Association for Tropical Biology}, volume = {43}, journal = {Biotropica : a publication of the Association for Tropical Biology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0006-3606}, doi = {10.1111/j.1744-7429.2010.00663.x}, pages = {183 -- 191}, year = {2011}, abstract = {Understory herbs are an essential part of tropical rain forests, but little is known about factors limiting their reproduction. Many of these herbs are clonal, patchily distributed, and produce large floral displays of nectar-rich 1-d flowers to attract hummingbird pollinators that may transport pollen over long distances. The aim of this study was to investigate the effects of clonality, cross-proximity, and patchy distribution on the reproduction of the hummingbird-pollinated Amazonian herb Heliconia metallica. We experimentally pollinated flowers within populations with self-pollen and with pollen of different diversity, crossed flowers between populations, and added supplemental pollen to ramets growing solitarily or in conspecific patches. Only flowers pollinated early in the morning produced seeds. Selfed flowers produced seeds, but seed number and mass were strongly reduced, suggesting partial sterility and inbreeding depression after selfing. Because of pollen competition, flowers produced more seeds after crosses with several than with single donor plants. Crosses between populations mostly resulted in lower seed production than those within populations, suggesting outbreeding depression. Ramets in patches produced fewer seeds than solitary ramets and were more pollen-limited, possibly due to geitonogamy and biparental inbreeding in patches. We conclude that high rates of geitonogamy due to clonality and pollen limitation due to the short receptivity of flowers and patchy distribution constrain the reproduction of this clonal herb. Even in unfragmented rain forests with highly mobile pollinators, outbreeding depression may be a widespread phenomenon in plant reproduction.}, language = {en} } @article{WenzelMertzOberhaenslietal.1997, author = {Wenzel, T. and Mertz, D. and Oberh{\"a}nsli, Roland and Becker, Thomas and Penne, P.}, title = {Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen massif (northern Bohemian massif) and implications for related occurrences from the mid-European Hecynian}, year = {1997}, language = {en} } @phdthesis{Becker2001, author = {Becker, Thomas}, title = {3D-Spektroskopie hintergrundkontaminierter Einzelobjekte in Galaxien der lokalen Gruppe}, pages = {110 S.}, year = {2001}, language = {de} } @article{ChristensenBeckerJahnkeetal.2003, author = {Christensen, Lise Bech and Becker, Thomas and Jahnke, Knud and Kelz, A. and Roth, Martin M. and Sanchez, S. S. and Wisotzki, Lutz}, title = {Integral field spectroscopy of SN 2002er with PMAS}, year = {2003}, abstract = {sent observations of the Type Ia supernova SN 2002er during the brightening phase. The observations were performed with the Potsdam Multi Aperture Spectrophotometer (PMAS) integral field instrument. Due to the 8arcsecx8 arcsec field of view of the spectrograph an accurate background subtraction was possible. Results from analyses of the evolution of absorption features in comparisons with other SNe show that SN 2002er is a fairly bright Type Ia supernova with a peak brightness of MB=-19.6+/-0.1.}, language = {en} } @article{WisotzkiBeckerChristensenetal.2003, author = {Wisotzki, Lutz and Becker, Thomas and Christensen, Lise Bech and Helms, Andreas and Jahnke, Knud and Kelz, A. and Roth, Martin M. and Sanchez, Sebastian F.}, title = {Integral-field spectrophotometry of the quadruple QSO HE 0435-1223 : Evidence for microlensing}, year = {2003}, abstract = {We present the first spatially resolved spectroscopic observations of the recently discovered quadruple QSO and gravitational lens HE 0435-1223. Using the Potsdam Multi-Aperture Spectrophotometer (PMAS), we show that all four QSO components have very similar but not identical spectra. In particular, the spectral slopes of components A, B, and D are indistinguishable, implying that extinction due to dust plays no major role in the lensing galaxy. While also the emission line profiles are identical within the error bars, as expected from lensing, the equivalent widths show significant differences between components. Most likely, microlensing is responsible for this phenomenon. This is also consistent with the fact that component D, which shows the highest relative continuum level, has brightened by 0.07 mag since Dec. 2001. We find that the emission line flux ratios between the components are in better agreement with simple lens models than broad band or continuum measurements, but that the discrepancies between model and data are still unacceptably large. Finally, we present a detection of the lensing galaxy, although this is close to the limits of the data. Comparing with a model galaxy spectrum, we obtain a redshift estimate of zlens=0.44+/- 0.02.}, language = {en} } @article{WisotzkiBeckerChristensenetal.2004, author = {Wisotzki, Lutz and Becker, Thomas and Christensen, Lise Bech and Jahnke, Knud and Helms, Andreas and Kelz, A. and Roth, Martin M. and Sanchez, Sebastian F.}, title = {Integral field spectrophotometry of gravitationally lensed QSOs with PMAS}, issn = {0004-6337}, year = {2004}, abstract = {We present spatially resolved spectrophotometric observations of multiply imaged QSOs, using the Potsdam Multi- Aperture Spectrophotometer (PMAS), with the intention to search for spectral differences between components indicative of either microlensing or dust extinction. For the quadruple QSO HE 0435-1223 we find that the continuum shapes are indistinguishable, therefore differential extinction is negligible. The equivalent widths of the broad emission lines are however significantly different, and we argue that this is most likely due to microlensing. Contrariwise, the two components of the well-known object UM 673 have virtually identical emission line properties, but the continuum slopes differ significantly and indicate different dust extinction along both lines of sight}, language = {en} } @article{JahnkeWisotzkiSanchezetal.2004, author = {Jahnke, Knud and Wisotzki, Lutz and Sanchez, Sebastian F. and Christensen, Lise Bech and Becker, Thomas and Kelz, A. and Roth, Martin M.}, title = {Integral field spectroscopy of QSO host galaxies}, year = {2004}, abstract = {We describe a project to study the state of the ISM in similar to20 low redshift (z < 0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe the development of the method to access the stellar and gas components of the spectrum without the strong nuclear emission, in order to access the host galaxy properties in the central region. It shows that integral field spectroscopy promises to be very efficient in studying the gas distribution and its velocity field, and also the spatially resolved stellar population in the host galaxies of luminous AGN}, language = {en} } @article{ChristensenSanchezJahnkeetal.2004, author = {Christensen, Lise Bech and Sanchez, Sebastian F. and Jahnke, Knud and Becker, Thomas and Wisotzki, Lutz and Kelz, A. and Popovic, L. C. and Roth, Martin M.}, title = {Integral field spectroscopy of extended Ly alpha emission from the DLA galaxy in Q2233+131}, year = {2004}, abstract = {This paper presents observations of an extended Lyman-alpha emission nebula surrounding the galaxy responsible for the Damped Lyman-alpha Absorption (DLA) line in the spectrum of the quasar Q2233+131. With the Potsdam Multi Aperture Spectrophotometer (PMAS) we measure the properties of the extended Lyalpha emission in an area of 3" x 5" having a total line flux of (2.8 +/- 0.3) x 10(-16) erg cm(-2) s(-1), which at redshift z = 3.15 corresponds to a luminosity of (2.4(-0.2)(+0.3)) x 10(43) erg s(-1) and a size of 23 x 38 kpc. The location of the emission is spatially coincident with the previously detected DLA galaxy, but extends significantly beyond its limb. We argue that the Lya emission is likely to be caused by an outflow from the DLA galaxy, presumably powered by star formation. In the case of negligible dust extinction, the Lya luminosity indicates a star-formation rate of 19 +/- 10 M-. yr(-1) consistent with that derived from the UV continuum flux from the parent galaxy. The wind velocity indicated by the integral field spectra is of the order of several hundred km s(-1). We find no indication of emission originating in a rotating disk}, language = {en} } @article{ChristensenSanchezJahnkeetal.2004, author = {Christensen, Lise Bech and Sanchez, Sebastian F. and Jahnke, Knud and Becker, Thomas and Kelz, A. and Wisotzki, Lutz and Roth, Martin M.}, title = {Integral field observations of damped Lyman-alpha galaxies}, year = {2004}, abstract = {We report preliminary results from a targeted investigation on quasars containing damped Lyman-alpha absorption (DLA) lines as well strong metal absorption lines, carried out with the Potsdam Multi Aperture Spectrophotometer (PMAS). We search for line-emitting objects at the same redshift as the absorption lines and close to the line of sight of the QSOs. We have observed and detected the already confirmed absorbing galaxies in Q2233+131 (Z(abs) = 3.15) and Q0151+045 (Z(abs),= 0.168), while failing to find spectral signatures for the z = 0.091 absorber in Q0738+313. From the Q2233+131 DLA galaxy, we have detected extended Lyalpha emission from an area of 3" x 5"}, language = {en} } @article{ChristensenSchulteLadbeckSanchezetal.2005, author = {Christensen, Lise Bech and Schulte-Ladbeck, R. E. and Sanchez, Sebastian F. and Becker, Thomas and Jahnke, Knud and Kelz, A. and Roth, Martin M. and Wisotzki, Lutz}, title = {Abundances and kinematics of a candidate sub-damped Lymana galaxy toward PHL 1226}, year = {2005}, abstract = {The spectrum of the quasar PHL 1226 is known to have a strong Mg II and sub-damped Lymanalpha (sub-DLA) absorption line system with N(H I) = (5 +/- 2) x 10(19) cm(-2) at z = 0.1602. Using integral field spectra from the Potsdam Multi Aperture Spectrophotometer (PMAS) we investigate a galaxy at an impact parameter of 6".4 which is most probably responsible for the absorption lines. A fainter galaxy at a similar redshift and a slightly larger distance from the QSO is known to exist, but we assume that the absorption is caused by the more nearby galaxy. From optical Balmer lines we estimate an intrinsic reddening consistent with 0, and a moderate star formation rate of 0.5 M-circle dot yr(-1) is inferred from the Ha luminosity. Using nebular emission line ratios we find a solar oxygen abundance 12 + log (O/H) = 8.7 +/- 0.1 and a solar nitrogen to oxygen abundance ratio log (N/O) = -1.0 +/- 0.2. This abundance is larger than those of all known sub-DLA systems derived from analyses of metal absorption lines in quasar spectra. On the other hand, the properties are compatible with the most metal rich galaxies responsible for strong Mg II absorption systems. These two categories can be reconciled if we assume an abundance gradient similar to local galaxies. Under that assumption we predict abundances 12 + log (O/H) = 7.1 and log (N/O) = -1.9 for the sub-DLA cloud, which is similar to high redshift DLA and sub-DLA systems. We find evidence for a rotational velocity of similar to200 km s(-1) over a length of similar to7 kpc. From the geometry and kinematics of the galaxy we estimate that the absorbing cloud does not belong to a rotating disk, but could originate in a rotating halo}, language = {en} }