@phdthesis{Boese2017, author = {Boese, Adrian Daniel}, title = {Theorie und Berechnung intermolekularer Wechselwirkungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412867}, school = {Universit{\"a}t Potsdam}, pages = {235}, year = {2017}, abstract = {Die klassische Physik/Chemie unterscheidet zwischen drei Bindungstypen: Der kovalenten Bindung, der ionischen Bindung und der metallischen Bindung. Molek{\"u}le untereinander werden hingegen durch schwache Wechselwirkungen zusammen gehalten, sie sind trotz ihrer schwachen Kr{\"a}fte weniger verstanden, aber dabei nicht weniger wichtig. In zukunftsweisenden Gebieten wie der Nanotechnologie, der Supramolekularen Chemie und Biochemie sind sie von elementarer Bedeutung. Um schwache, intermolekulare Wechselwirkungen zu beschreiben, vorauszusagen und zu verstehen, sind sie zun{\"a}chst theoretisch zu erfassen. Hierzu geh{\"o}ren verschiedene quantenchemische Methoden, die in dieser Arbeit vorgestellt, verglichen, weiterentwickelt und schließlich auch exemplarisch auf Problemstellungen in der Chemie angewendet werden. Aufbauend auf einer Hierarchie von Methoden unterschiedlicher Genauigkeit werden sie f{\"u}r diese Ziele eingesetzt, ausgearbeitet und kombiniert. Berechnet wird die Elektronenstruktur, also die Verteilung und Energie von Elektronen, die im Wesentlichen die Atome zusammen halten. Da Ungenauigkeiten von der Beschreibung der Elektronenstruktur von den verwendeten Methoden abh{\"a}ngen, kann man die Effekte detailliert untersuchen, sie beschreiben und darauf aufbauend weiter entwickeln, um sie anschließend an verschiedenen Modellen zu testen. Die Geschwindigkeit der Berechnungen mit modernen Computern ist eine wesentliche, zu ber{\"u}cksichtigende Komponente, da im Allgemeinen die Genauigkeit mit der Rechenzeit exponentiell steigt, und die damit an die Grenzen der M{\"o}glichkeiten stoßen muss. Die genaueste der verwendeten Methoden basiert auf der Coupled-Cluster-Theorie, die sehr gute Voraussagen erm{\"o}glicht. F{\"u}r diese wird eine sogenannte spektroskopische Genauigkeit mit Abweichungen von wenigen Wellenzahlen erzielt, was Vergleiche mit experimentellen Daten zeigen. Eine M{\"o}glichkeit zur N{\"a}herung von hochgenauen Methoden basiert auf der Dichtefunktionaltheorie: Hier wurde das „Boese-Martin for Kinetics" (BMK)-Funktional entwickelt, dessen Funktionalform sich in vielen nach 2010 ver{\"o}ffentlichten Dichtefunktionalen wiederfindet. Mit Hilfe der genaueren Methoden lassen sich schließlich semiempirische Kraftfelder zur Beschreibung intermolekularer Wechselwirkungen f{\"u}r individuelle Systeme parametrisieren, diese ben{\"o}tigen weit weniger Rechenzeit als die Methoden, die auf der genauen Berechnung der Elektronenstruktur von Molek{\"u}len beruhen. F{\"u}r gr{\"o}ßere Systeme lassen sich auch verschiedene Methoden kombinieren. Dabei wurden Einbettungsverfahren verfeinert und mit neuen methodischen Ans{\"a}tzen vorgeschlagen. Sie verwenden sowohl die symmetrieadaptierte St{\"o}rungstheorie als auch die quantenchemische Einbettung von Fragmenten in gr{\"o}ßere, quantenchemisch berechnete Systeme. Die Entwicklungen neuer Methoden beziehen ihren Wert im Wesentlichen durch deren Anwendung: In dieser Arbeit standen zun{\"a}chst die Wasserstoffbr{\"u}cken im Vordergrund. Sie z{\"a}hlen zu den st{\"a}rkeren intermolekularen Wechselwirkungen und sind nach wie vor eine Herausforderung. Im Gegensatz dazu sind van-der-Waals Wechselwirkungen relativ einfach durch Kraftfelder zu beschreiben. Deshalb sind viele der heute verwendeten Methoden f{\"u}r Systeme, in denen Wasserstoffbr{\"u}cken dominieren, vergleichsweise schlecht. Eine Untersuchung molekularer Aggregate mit Auswirkungen intermolekularer Wechselwirkungen auf die Schwingungsfrequenzen von Molek{\"u}len schließt sich an. Dabei wird auch {\"u}ber die sogenannte starrer-Rotor-harmonischer-Oszillator-N{\"a}herung hinausgegangen. Eine weitreichende Anwendung behandelt Adsorbate, hier die von Molek{\"u}len auf ionischen/metallischen Oberfl{\"a}chen. Sie k{\"o}nnen mit {\"a}hnlichen Methoden behandelt werden wie die intermolekularen Wechselwirkungen, und sind mit speziellen Einbettungsverfahren sehr genau zu beschreiben. Die Resultate dieser theoretischen Berechnungen stimulierten eine Neubewertung der bislang bekannten experimentellen Ergebnisse. Molekulare Kristalle sind ein {\"a}ußerst wichtiges Forschungsgebiet. Sie werden durch schwache Wechselwirkungen zusammengehalten, die von van-der-Waals Kr{\"a}ften bis zu Wasserstoffbr{\"u}cken reichen. Auch hier wurden neuentwickelte Methoden eingesetzt, die eine interessante, mindestens ebenso genaue Alternative zu den derzeit g{\"a}ngigen Methoden darstellen. Von daher sind die entwickelten Methoden, als auch deren Anwendung {\"a}ußerst vielf{\"a}ltig. Die behandelten Berechnungen der Elektronenstruktur erstrecken sich von den sogenannten post-Hartree-Fock-Methoden {\"u}ber den Einsatz der Dichtefunktionaltheorie bis zu semiempirischen Kraftfeldern und deren Kombinationen. Die Anwendung reicht von einzelnen Molek{\"u}len in der Gasphase {\"u}ber die Adsorption auf Oberfl{\"a}chen bis zum molekularen Festk{\"o}rper.}, language = {de} } @article{BoeseSaalfrank2016, author = {Boese, Adrian Daniel and Saalfrank, Peter}, title = {CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b03726}, pages = {12637 -- 12653}, year = {2016}, abstract = {In this work, we study the adsorption of CO from low to high coverage at a defect-free NaCl(100) surface by means of duster and periodic models, using highly accurate wave function-based QM:QM embedding as well as density functional theory. At low coverages, the most accurate methods predict a zero-point-corrected adsorption energy of around 13 kJ/mol, and the CO molecules are found to be oriented perpendicular to the surface. At higher coverages, lower-energy phases with nonparallel/upright, tilted orientations emerge. Besides the well-known p(2 x 1)/antiparallel phase (T/A), we find other tilted phases (tilted/irregular, T/I; tilted/spiral, T/S) as local minima. Vibrational frequencies for CO adsorbed on NaCl(100) and Davydov splittings of the C-O stretch vibration are also determined. The IR spectra are characteristic fingerprints for the relative orientation of CO molecules and may therefore be used as sensitive probes to distinguish parallel/upright from various tilted adsorption phases.}, language = {en} } @article{Boese2015, author = {Boese, Adrian Daniel}, title = {Density Functional Theory and Hydrogen Bonds: Are We There Yet?}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {16}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201402786}, pages = {978 -- 985}, year = {2015}, abstract = {Density functional theory (DFT) has become more successful at introducing dispersion interactions, and can be thus applied to a wide range of systems. Amongst these are systems that contain hydrogen bonds, which are extremely important for the biological regime. Here, the description of hydrogen-bonded interactions by DFT with and without dispersion corrections is investigated. For small complexes, for which electrostatics are the determining factor in the intermolecular interactions, the inclusion of dispersion with most functionals yields large errors. Only for larger systems, in which van der Waals interactions are more important, do dispersion corrections improve the performance of DFT for hydrogen-bonded systems. None of the studied functionals, including double hybrid functionals (with the exception of DSD-PBEP86 without dispersion corrections), are more accurate than MP2 for the investigated species.}, language = {en} } @article{CodorniuHernandezHallBoeseetal.2015, author = {Codorniu-Hernandez, Edelsys and Hall, Kyle Wm. and Boese, Adrian Daniel and Ziemianowicz, Daniel and Carpendale, Sheelagh and Kusalik, Peter G.}, title = {Mechanism of O(P-3) Formation from a Hydroxyl Radical Pair in Aqueous Solution}, series = {Journal of chemical theory and computation}, volume = {11}, journal = {Journal of chemical theory and computation}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.5b00783}, pages = {4740 -- 4748}, year = {2015}, abstract = {The reaction mechanism for the rapid formation of a triplet oxygen atom, O(P-3), from a pair of triplet-state hydroxyl radicals in liquid water is explored utilizing extensive Car-Parrinello MD simulations and advanced visualization techniques. The local solvation structures, the evolution of atomic charges, atomic separations, spin densities, electron localization functions, and frontier molecular orbitals, as well as free energy profiles, evidence that the reaction proceeds through a hybrid (hydrogen atom transfer and electron proton transfer) and hemibond-assisted reaction mechanism. A benchmarking study utilizing high-level ab initio calculations to examine the interactions of a hydroxyl radical pair in the gas phase and the influence of a hemibonded water is also provided. The results presented here should serve as a foundation for further experimental and theoretical studies aimed at better understanding the role and potential applications of the triplet oxygen atom as a potent reactive oxygen species.}, language = {en} } @article{Boese2015, author = {Boese, Adrian Daniel}, title = {Basis set limit coupled-cluster studies of hydrogen-bonded systems}, series = {Molecular physics}, volume = {113}, journal = {Molecular physics}, number = {13-14}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0026-8976}, doi = {10.1080/00268976.2014.1001806}, pages = {1618 -- 1629}, year = {2015}, abstract = {As hydrogen-bonded systems are of utmost importance in especially biological and chemical systems, a new set of highly accurate reference dissociation energies, denoted HB49, is devised. For the molecules in this set, the basis set convergence of post-Hartree-Fock methods, including F12 methods, is investigated. Using combined Moller-Plesset perturbation theory (MP2) and CCSD(T) approaches for energies and MP2 and QCISD(T) for gradients, we achieve CCSD(T) accuracy, which has been determined before to yield an accuracy of 0.2 kJ/mol for a subset of HB49. Both conventional extrapolation techniques and F12 techniques are competitive with each other. By using MP2+Delta CCSD(T), a rather fast basis set convergence is obtained when both basis sets are carefully chosen.}, language = {en} } @article{BoeseBoese2015, author = {Boese, Adrian Daniel and Boese, Roland}, title = {Tetrahydrothiophene and Tetrahydrofuran, Computational and X-ray Studies in the Crystalline Phase}, series = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, volume = {15}, journal = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1528-7483}, doi = {10.1021/cg501228w}, pages = {1073 -- 1081}, year = {2015}, abstract = {Calculations at various levels of theory with different methods and respective evaluations confirm that the twist conformation (C-2) is preferred for tetrahydrothiophene (THT) in the gas phase. In the crystalline phase, achieved by a laser assisted crystallization device, THT has C-1 symmetry (slightly distorted C-2 symmetry) in the chiral space group P2(1)2(1)2(1). This is obviously a packing effect caused by the nonsymmetrical arrangement of neighboring molecules. The distortion from C-2 symmetry costs very little energy as confirmed by computational methods in the gas phase. Only one enantiomer of the chiral THT is found in the cell which requires spontaneous crystallization, which results in a racemic mixture of crystals, or a racemization occurs prior to/during nucleation or in the embryonic state. The racemization happens by a mechanism that can be described as a partial pseudo rotation within a five-membered mono-heterocycle with a C-2-C-S-C-2' transition (C-2 and C-2' are enantiomers) maintaining the heteroatom residing within the symmetry elements. While THT has the molecular symmetry of the gas phase almost also in the crystalline phase, THF has an envelope conformation (CS). This was also established by calculations at various levels of theory which agrees well with the previously experimentally found conformation by electron diffraction. However, in the X-ray crystal structure, previously determined by Luger \& Buschmann, THF has C-2 symmetry in the centrosymmetric space group C2/c with the oxygen atom situated on the crystallographic C-2 polar axis, requesting a racemic crystal for the twisted conformers of the enantiomers. No solid-state phase transitions were detected within the experimental ranges for THT and THF. Following the stabilization by molecular clustering, and ending at the crystal lattice, we stepwise increased the number of molecules by calculation of the respective monomers, dimers, trimers, and tetramers for THF and THT. The starting point was taken from the arrangements as found in the respective crystal structures. Both conformational enantiomers are equal in energy. In such cases, a crystal may contain either a racemate of conformers or one of the conformational enantiomers only. The first case is observed in THF, the latter one in THT. It is quite likely that the selection of one enantiomeric conformer of THT from an equilibrium of conformers at the early stage of nucleation (embryonic stage) is responsible for the spontaneous crystallization. In order to check if THF could form a polymorph with the molecular packing of THT and vice versa, we first calculated THF and THT in their respective crystal lattices as determined by X-ray diffraction. Exchanging the compounds in the THT and THF crystal lattices (i.e., replacing O against S and vice versa) results in significantly worse lattice energies indicating that such a polymorph is not a probable option.}, language = {en} } @article{TsendraScottGorbetal.2014, author = {Tsendra, Oksana and Scott, Andrea Michalkova and Gorb, Leonid and Boese, Adrian Daniel and Hill, Frances C. and Ilchenko, Mykola M. and Leszczynska, Danuta and Leszczynski, Jerzy}, title = {Adsorption of Nitrogen-Containing Compounds on the (100) alpha-Quartz Surface: Ab Initio Cluster Approach}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp406827h}, pages = {3023 -- 3034}, year = {2014}, abstract = {A cluster approach extended to the ONIOM methodology has been applied using several density functionals and Moller-Plesset perturbation theory (MP2) to simulate the adsorption of selected nitrogen-containing compounds [NCCs, 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-nitro-1,2,4-triazole-5-one (NTO)] on the hydroxyated (100) surface of a-quartz. The structural properties were calculated using the M06-2X functional and 6-31G(d,p) basis set. The M06-2X-D3, PBE-D3, and MP2 methods were used to calculate the adsorption energies. Results have been compared with the data from other studies of adsorption of compounds of similar nature on silica. Effect of deformation of the silica surface and adsorbates on the binding energy values was also studied. The atoms in molecules (AIM) analysis was employed to characterize the adsorbate-adsorbent binding and to calculate the bond energies. The silica surface shows different sorption affinity toward the chemicals considered depending on their electronic structure. All target NCCs are physisorbed on the modeled silica surface. Adsorption occurs due to the formation of multiple hydrogen bonds between the functional groups of NCCs and surface silanol groups. Parallel orientation of NCCs interacting with the silica surface was found to be favorable when compared with perpendicularly oriented NCCs. NTO was found to be the most strongly adsorbed on the silica surface among all of the considered compounds. Dispersion correction was shown to play an important role in the DFT calculations of the adsorption energies of silica-NCC systems.}, language = {en} } @misc{Boese2014, author = {Boese, Adrian Daniel}, title = {Assessment of coupled cluster theory and more approximate methods for Hydrogen Bonded Systems (vol 9, pg 4403, 2013)}, series = {Journal of chemical theory and computation}, volume = {10}, journal = {Journal of chemical theory and computation}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/ct500041j}, pages = {893 -- 893}, year = {2014}, language = {en} } @article{Boese2013, author = {Boese, Adrian Daniel}, title = {Assessment of coupled cluster theory and more approximate methods for hydrogen bonded systems}, series = {Journal of chemical theory and computation}, volume = {9}, journal = {Journal of chemical theory and computation}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/ct400558w}, pages = {4403 -- 4413}, year = {2013}, abstract = {To assess the accuracy of post-Hartree-Fock methods like CCSD(T), MP3, MP2.5, MP2, SCS-MP2, SOS-MP2, and DFT-SAPT, we evaluated several effects going beyond valence-correlated CCSD(T). For 16 small hydrogen bonded systems, CCSD(T) achieves an RMS error of 0.17 kJ/mol in the dissociation energy compared to our best estimate, which is a composite method akin to W4 theory. The error of CCSD(T) is thus much lower than for atomization energies. MP2 is surprisingly accurate for these systems with an RMS error of 1.3 kJ/mol. MP2.5 yields a clear improvement over MP2 (RMS of 0.5 kJ/mol) but still has an error about 3 times as large as CCSD(T) for the absolute RMS and almost 10 times as large for the relative RMS. error. Neither SCS-MP2, SOS-MP2, nor DFT-SAPT yield lower errors than MP2. With a Delta CCSD(T) correction to MP2, the basis set limit is readily achieved when employing diffuse functions-without these, the convergence is rather slow.}, language = {en} } @article{CodorniuHernandezBoeseKusalik2013, author = {Codorniu-Hernandez, Edelsys and Boese, Adrian Daniel and Kusalik, Peter G.}, title = {The hemibond as an alternative condensed phase structure for the hydroxyl radical}, series = {Canadian journal of chemistry = Revue canadienne de chimie}, volume = {91}, journal = {Canadian journal of chemistry = Revue canadienne de chimie}, number = {7}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {0008-4042}, doi = {10.1139/cjc-2012-0520}, pages = {544 -- 551}, year = {2013}, abstract = {Despite the critical importance of the hydroxyl radical in major scientific fields, there are still open questions on the behavior of this species in the aqueous phase. In particular, there has been much debate on the existence of a hemibonded interaction between the hydroxyl radical and water molecules. While some reports indicate that the hemibonded radical might explain some experimental data, others have claimed that this interaction is simply a density functional theory (DFT) artifact. Here, we provide results from high level (basis set limit of coupled-cluster levels up to single, double, triple excitations (CCSD(T)) and beyond) ab initio calculations of different OH center dot(H2O)(n) clusters in the gas phase to accurately explore the existence of the hemibonded interaction and its energy difference with respect to other well-defined hydrogen bond interactions. Additional comparisons with second order perturbation theory (MP2) and DFT are also presented. Constrained molecular dynamics was applied to determine the free energy for the formation/disruption and ice systems. Overall, our findings confirm that the hemibond can be an alternative structure for the hydroxyl radical in the condensed phase when the formation of hydrogen bonds is impeded. These results will aid the understanding of theoretical and experimental data and help future experimental designs for the detection of this important species.}, language = {en} }