@article{CarpiAndersonBaueretal.2015, author = {Carpi, Federico and Anderson, Iain and Bauer, Siegfried and Frediani, Gabriele and Gallone, Giuseppe and Gei, Massimiliano and Graaf, Christian and Jean-Mistral, Claire and Kaal, William and Kofod, Guggi and Kollosche, Matthias and Kornbluh, Roy and Lassen, Benny and Matysek, Marc and Michel, Silvain and Nowak, Stephan and Pei, Qibing and Pelrine, Ron and Rechenbach, Bjorn and Rosset, Samuel and Shea, Herbert}, title = {Standards for dielectric elastomer transducers}, series = {Smart materials and structures}, volume = {24}, journal = {Smart materials and structures}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0964-1726}, doi = {10.1088/0964-1726/24/10/105025}, pages = {25}, year = {2015}, abstract = {Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.}, language = {en} } @article{WacheMcCarthyRisseetal.2015, author = {Wache, Remi and McCarthy, Denis N. and Risse, Sebastian and Kofod, Guggi}, title = {Rotary Motion Achieved by New Torsional Dielectric Elastomer Actuators Design}, series = {IEEE ASME transactions on mechatronics}, volume = {20}, journal = {IEEE ASME transactions on mechatronics}, number = {2}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1083-4435}, doi = {10.1109/TMECH.2014.2301633}, pages = {975 -- 977}, year = {2015}, abstract = {This paper reports a new way to produce a rotation motion actuated by dielectric elastomer actuators. Two specific electrode designs have been developed and the rotation of the actuator centers has been demonstrated and measured. At low strains, the rotation shows a nearly quadratic dependence with the voltage. This behavior was used to compare the performances between the two proposed designs. Among the tested configurations, a maximal rotation of 10 degrees was achieved.}, language = {en} } @article{KolloscheKofodSuoetal.2015, author = {Kollosche, Matthias and Kofod, Guggi and Suo, Zhigang and Zhu, Jian}, title = {Temporal evolution and instability in a viscoelastic dielectric elastomer}, series = {Journal of the mechanics and physics of solids}, volume = {76}, journal = {Journal of the mechanics and physics of solids}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-5096}, doi = {10.1016/j.jmps.2014.11.013}, pages = {47 -- 64}, year = {2015}, abstract = {Dielectric elastomer transducers are being developed for applications in stretchable electronics, tunable optics, biomedical devices, and soft machines. These transducers exhibit highly nonlinear electromechanical behavior: a dielectric membrane under voltage can form wrinkles, undergo snap-through instability, and suffer electrical breakdown. We investigate temporal evolution and instability by conducting a large set of experiments under various prestretches and loading rates, and by developing a model that allows viscoelastic instability. We use the model to classify types of instability, and map the experimental observations according to prestretches and loading rates. The model describes the entire set of experimental observations. A new type of instability is discovered, which we call wrinkle-to-wrinkle transition. A flat membrane at a critical voltage forms wrinkles and then, at a second critical voltage, snaps into another state of winkles of a shorter wavelength. This study demonstrates that viscoelasticity is essential to the understanding of temporal evolution and instability of dielectric elastomers. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }