@article{CaoShpritsNietal.2017, author = {Cao, Xing and Shprits, Yuri Y. and Ni, Binbin and Zhelavskaya, Irina}, title = {Scattering of Ultra-relativistic Electrons in the Van Allen Radiation Belts Accounting for Hot Plasma Effects}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-17739-7}, pages = {7}, year = {2017}, abstract = {Electron flux in the Earth's outer radiation belt is highly variable due to a delicate balance between competing acceleration and loss processes. It has been long recognized that Electromagnetic Ion Cyclotron (EMIC) waves may play a crucial role in the loss of radiation belt electrons. Previous theoretical studies proposed that EMIC waves may account for the loss of the relativistic electron population. However, recent observations showed that while EMIC waves are responsible for the significant loss of ultra-relativistic electrons, the relativistic electron population is almost unaffected. In this study, we provide a theoretical explanation for this discrepancy between previous theoretical studies and recent observations. We demonstrate that EMIC waves mainly contribute to the loss of ultra-relativistic electrons. This study significantly improves the current understanding of the electron dynamics in the Earth's radiation belt and also can help us understand the radiation environments of the exoplanets and outer planets.}, language = {en} } @article{ZhelavskayaShpritsSpasojevic2017, author = {Zhelavskaya, Irina and Shprits, Yuri Y. and Spasojevic, Maria}, title = {Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks}, series = {Journal of geophysical research : Space physics}, volume = {122}, journal = {Journal of geophysical research : Space physics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2017JA024406}, pages = {11227 -- 11244}, year = {2017}, abstract = {We present the PINE (Plasma density in the Inner magnetosphere Neural network\&\#8208;based Empirical) model \&\#8208; a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural\&\#8208;network\&\#8208;based Upper hybrid Resonance Determination) algorithm for the period of 1 October 2012 to 1 July 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2\&\#8804;L\&\#8804;6 and all local times. We validate and test the model by measuring its performance on independent data sets withheld from the training set and by comparing the model\&\#8208;predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96\&\#8201;h time history of Kp, AE, SYM\&\#8208;H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the nightside and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in situ observations by using machine learning techniques.}, language = {en} } @article{AseevShpritsDrozdovetal.2017, author = {Aseev, Nikita and Shprits, Yuri Y. and Drozdov, Alexander and Kellerman, Adam C. and Usanova, Maria E. and Wang, D. and Zhelavskaya, Irina}, title = {Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes}, series = {Journal of geophysical research : Space physics}, volume = {122}, journal = {Journal of geophysical research : Space physics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2017JA024485}, pages = {10102 -- 10111}, year = {2017}, abstract = {Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth's outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from Van Allen Probe particle data as a function of time and three adiabatic invariants between 9 October and 29 November 2012. New local minimums in the profiles are accompanied by the narrowing of normalized pitch angle distributions and ground\&\#8208;based detection of EMIC waves. Such a correlation may be indicative of ultrarelativistic electron precipitation into the Earth's atmosphere caused by resonance with EMIC waves.}, language = {en} }