@misc{PaijmansBarlowHennebergeretal.2020, author = {Paijmans, Johanna L. A. and Barlow, Axel and Henneberger, Kirstin and Fickel, J{\"o}rns and Hofreiter, Michael and Foerste, Daniel W. G.}, title = {Ancestral mitogenome capture of the Southeast Asian banded linsang}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {972}, issn = {1866-8372}, doi = {10.25932/publishup-47444}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474441}, pages = {14}, year = {2020}, abstract = {Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close relatives, as is often the case for rare or extinct species, and is a viable approach for the analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this situation, being rare Southeast Asian carnivores for which little molecular data is available. Using ancestral capture we recover partial mitochondrial genome sequences for seven banded linsangs (P. linsang) from historical specimens, representing the first intraspecific genetic dataset for this species. We additionally assemble a high quality mitogenome for the banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardicolor), with an estimated divergence of ~12 million years (Ma). Although our sample size precludes any robust interpretation of the population structure of the banded linsang, we recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility of ancestral capture for studying divergent taxa without close relatives.}, language = {en} } @article{PaijmansBarlowHennebergeretal.2020, author = {Paijmans, Johanna L. A. and Barlow, Axel and Henneberger, Kirstin and Fickel, J{\"o}rns and Hofreiter, Michael and Foerste, Daniel W. G.}, title = {Ancestral mitogenome capture of the Southeast Asian banded linsang}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, number = {6}, publisher = {PLOS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0234385}, pages = {12}, year = {2020}, abstract = {Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close relatives, as is often the case for rare or extinct species, and is a viable approach for the analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this situation, being rare Southeast Asian carnivores for which little molecular data is available. Using ancestral capture we recover partial mitochondrial genome sequences for seven banded linsangs (P. linsang) from historical specimens, representing the first intraspecific genetic dataset for this species. We additionally assemble a high quality mitogenome for the banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardicolor), with an estimated divergence of ~12 million years (Ma). Although our sample size precludes any robust interpretation of the population structure of the banded linsang, we recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility of ancestral capture for studying divergent taxa without close relatives.}, language = {en} } @article{ApriyantoTambunan2021, author = {Apriyanto, Ardha and Tambunan, Van Basten}, title = {Draft genome sequence, annotation, and SSR mining data of Elaeidobius kamerunicus Faust., an essential oil palm pollinating weevil}, series = {Data in Brief}, volume = {34}, journal = {Data in Brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2021.106745}, pages = {7}, year = {2021}, abstract = {Elaeidobius kamerunicus Faust. (Coleoptera: Curculionidae) is an essential insect pollinator in oil palm plantations. Recently, researches have been undertaken to improve pollination efficiency using this species. A fundamental understanding of the genes related to this pollinator behavior is necessary to achieve this goal. Here, we present the draft genome sequence, annotation, and simple sequence repeat (SSR) marker data for this pollinator. In total, 34.97 Gb of sequence data from one male individual (monoisolate) were obtained using Illumina short-read platform NextSeq 500. The draft genome assembly was found to be 269.79 Mb and about 59.9\% of completeness based on Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment. Functional gene annotation predicted about 26.566 genes. Also, a total of 281.668 putative SSR markers were identified. This draft genome sequence is a valuable resource for understanding the population genetics, phylogenetics, dispersal patterns, and behavior of this species.}, language = {en} } @phdthesis{Folkertsma2020, author = {Folkertsma, Remco}, title = {Evolutionary adaptation to climate in microtine mammals}, doi = {10.25932/publishup-47680}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476807}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2020}, abstract = {Understanding how organisms adapt to their local environment is a major focus of evolutionary biology. Local adaptation occurs when the forces of divergent natural selection are strong enough compared to the action of other evolutionary forces. An improved understanding of the genetic basis of local adaptation can inform about the evolutionary processes in populations and is of major importance because of its relevance to altered selection pressures due to climate change. So far, most insights have been gained by studying model organisms, but our understanding about the genetic basis of local adaptation in wild populations of species with little genomic resources is still limited. With the work presented in this thesis I therefore set out to provide insights into the genetic basis of local adaptation in populations of two voles species: the common vole (Microtus arvalis) and the bank vole (Myodes glareolus). Both voles species are small mammals, they have a high evolutionary potential compared to their dispersal capabilities and are thus likely to show genetic responses to local conditions, moreover, they have a wide distribution in which they experience a broad range of different environmental conditions, this makes them an ideal species to study local adaptation. The first study focused on producing a novel mitochondrial genome to facilitate further research in M. arvalis. To this end, I generated the first mitochondrial genome of M. arvalis using shotgun sequencing and an iterative mapping approach. This was subsequently used in a phylogenetic analysis that produced novel insights into the phylogenetic relationships of the Arvicolinae. The following two studies then focused on the genetic basis of local adaptation using ddRAD-sequencing data and genome scan methods. The first of these involved sequencing the genomic DNA of individuals from three low-altitude and three high-altitude M. arvalis study sites in the Swiss Alps. High-altitude environments with their low temperatures and low levels of oxygen (hypoxia) pose considerable challenges for small mammals. With their small body size and proportional large body surface they have to sustain high rates of aerobic metabolism to support thermogenesis and locomotion, which can be restricted with only limited levels of oxygen available. To generate insights into high-altitude adaptation I identified a large number of single nucleotide polymorphisms (SNPs). These data were first used to identify high levels of differentiation between study sites and a clear pattern of population structure, in line with a signal of isolation by distance. Using genome scan methods, I then identified signals of selection associated with differences in altitude in genes with functions related to oxygen transport into tissue and genes related to aerobic metabolic pathways. This indicates that hypoxia is an important selection pressure driving local adaptation at high altitude in M. arvalis. A number of these genes were linked with high-altitude adaptation in other species before, which lead to the suggestion that high-altitude populations of several species have evolved in a similar manner as a response to the unique conditions at high altitude The next study also involved the genetic basis of local adaptation, here I provided insights into climate-related adaptation in M. glareolus across its European distribution. Climate is an important environmental factor affecting the physiology of all organisms. In this study I identified a large number of SNPs in individuals from twelve M. glareolus populations distributed across Europe. I used these, to first establish that populations are highly differentiated and found a strong pattern of population structure with signal of isolation by distance. I then employed genome scan methods to identify candidate loci showing signals of selection associated with climate, with a particular emphasis on polygenic loci. A multivariate analysis was used to determine that temperature was the most important climate variable responsible for adaptive genetic variation among all variables tested. By using novel methods and genome annotation of related species I identified the function of genes of candidate loci. This showed that genes under selection have functions related to energy homeostasis and immune processes. Suggesting that M. glareolus populations have evolved in response to local temperature and specific local pathogenic selection pressures. The studies presented in this thesis provide evidence for the genetic basis of local adaptation in two vole species across different environmental gradients, suggesting that the identified genes are involved in local adaptation. This demonstrates that with the help of novel methods the study of wild populations, which often have little genomic resources available, can provide unique insights into evolutionary processes.}, language = {en} } @misc{GurkeVidalGorosquietaPajimansetal.2021, author = {Gurke, Marie and Vidal-Gorosquieta, Amalia and Pajimans, Johanna L. A. and Wȩcek, Karolina and Barlow, Axel and Gonz{\´a}lez-Fortes, Gloria M. and Hartmann, Stefanie and Grandal-d'Anglade, Aurora and Hofreiter, Michael}, title = {Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-52087}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520875}, pages = {17}, year = {2021}, abstract = {Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia.}, language = {en} } @article{GurkeVidalGorosquietaPajimansetal.2021, author = {Gurke, Marie and Vidal-Gorosquieta, Amalia and Pajimans, Johanna L. A. and Wȩcek, Karolina and Barlow, Axel and Gonz{\´a}lez-Fortes, Gloria M. and Hartmann, Stefanie and Grandal-d'Anglade, Aurora and Hofreiter, Michael}, title = {Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence}, series = {PLoS ONE}, volume = {16}, journal = {PLoS ONE}, number = {4}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0249537}, pages = {15}, year = {2021}, abstract = {Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia.}, language = {en} }