@article{MortensenKullingSchwartzetal.2009, author = {Mortensen, Alicja and Kulling, Sabine E. and Schwartz, Heidi and Rowland, Ian and Ruefer, Corinna E. and Rimbach, Gerald and Cassidy, Aedin and Magee, Pamela and Millar, Julie and Hall, Wendy L. and Kramer Birkved, Franziska and Sorensen, Ilona K. and Sontag, Gerhard}, title = {Analytical and compositional aspects of isoflavones in food and their biological effects}, issn = {1613-4125}, doi = {10.1002/mnfr.200800478}, year = {2009}, abstract = {This paper provides an overview of analytical techniques used to determine isoflavones (IFs) in foods and biological fluids with main emphasis on sample preparation methods. Factors influencing the content of IFs in food including processing and natural variability are summarized and an insight into IF databases is given. Comparisons of dietary intake of IFs in Asian and Western populations, in special subgroups like vegetarians, vegans, and infants are made and our knowledge on their absorption, distribution, metabolism, and excretion by the human body is presented. The influences of the gut microflora, age, gender, background diet, food matrix, and the chemical nature of the IFs on the metabolism of IFs are described. Potential mechanisms by which IFs may exert their actions are reviewed, and genetic polymorphism as determinants of biological response to soy IFs is discussed. The effects of IFs on a range of health outcomes including atherosclerosis, breast, intestinal, and prostate cancers, menopausal symptoms, bone health, and cognition are reviewed on the basis of the available in vitro, in vivo animal and human data.}, language = {en} } @article{RuferKulling2006, author = {Rufer, CE and Kulling, Sabine E.}, title = {Antioxidant activity of isoflavones and their major metabolites using different in vitro assays}, year = {2006}, abstract = {Isoflavone phytoestrogens found mainly in soybeans and clover are widely studied phytochemicals. Genistein and daidzein, the major isoflavones found in soy, have received the most attention. However, they undergo extensive metabolism in the intestine and the liver, which might affect their biological properties, e.g. their antioxidant capacities. Furthermore, the biological activities of other naturally occurring isoflavones, for instance, glycitein from soy or biochanin A from red clover, have not yet been studied in detail. The aim of this study was to investigate the antioxidant activities of six naturally occurring isoflavones and their corresponding oxidative and bacterial metabolites. The oxygen radical absorbance capacity assay as well as the in vitro oxidation of low density lipoproteins with the conjugated diene and the thiobarbituric acid reacting substances formation as end points were used. The oxidative metabolites of genistein and daidzein as well as equol exhibited the highest antioxidant activities in all three assays. With few exceptions, they were more effective than the positive controls quercetin and ascorbic acid. Formononetin, the 4'-O-methyl ether of daidzein, showed the lowest antioxidant property. Because the antioxidant efficacy of isoflavones as effective antioxidants is evident at concentrations well within the range found in the plasma of subjects consuming soy products, this biological activity could be of physiological relevance}, language = {en} } @article{WieseEsatbeyogluWinterhalteretal.2015, author = {Wiese, Stefanie and Esatbeyoglu, Tuba and Winterhalter, Peter and Kruse, Hans-Peter and Winkler, Stephanie and Bub, Achim and Kulling, Sabine E.}, title = {Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: A randomized cross-over study in humans}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {59}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201400422}, pages = {610 -- 621}, year = {2015}, abstract = {Scope: Flavan-3-ols are abundant polyphenols in human nutrition and are associated with beneficial health effects. The aim of this study was to comparatively investigate the metabolic fate of (-)-epicatechin, procyanidin B1, and polymeric procyanidins in a randomized cross-over study in humans. Methods and results: Parent compounds, conjugates, and microbial metabolites were determined in plasma, urine, and faeces by HPLC-MS and GC-MS/MS. Glucuronidated, sulfated, and methylated (-)-epicatechin and 5-(3',4'-dihydroxyphenyl)-valerolactone were the dominant metabolites in blood and urine. In addition, minor amounts of procyanidin B1 and 4-hydroxy-5-(3',4'-dihydroxyphenyl) valeric acid and their conjugated metabolites were detected. The formation of 5-(3',4'-dihydroxyphenyl)-valerolactone and 4-hydroxy-5-(3',4'-dihydroxyphenyl) valeric acid varied largely between individuals as well as with the degree of polymerization of flavan-3-ols. Monomer units were not detectable in plasma or urine after procyanidin B1 and polymeric procyanidin intake. No correlation was found between the intake of flavan-3-ols and the occurrence of phenolic acids in blood and urine or the phenolic compound profiles in faeces. Conclusion: In addition to conjugated metabolites derived from the absorption of monomeric flavan-3-ols, 5-(3',4' -dihydroxyphenyl)-valerolactone represents an important in vivo metabolite of (-)-epicatechin and procyanidin B1 produced by the gut microbiota.}, language = {en} } @article{RueferGerhauserFranketal.2005, author = {Ruefer, Corinna E. and Gerhauser, C. and Frank, N. and Becker, Hans and Kulling, Sabine E.}, title = {In vitro phase II metabolism of xanthohumol by human UDP-glucuronosyltransferases and sulfotransferases}, issn = {1613-4125}, year = {2005}, abstract = {Xanthohumol (XN) is the principal prenylated flavonoid of the hop plant and has recently gained considerable interest due to its potential cancer-chemopreventive effects. However, the metabolism of XN has not yet been investigated in detail. Therefore, we studied the in vitro phase 11 metabolism of XN using nine human recombinant UDP- glucuronosyltransferases (UGT) and five sulfotransferases (SULT). The identification of the metabolites formed was elucidated using HPLC with diode array detection as well as HPLC/API-ES MS. XN was efficiently glucuronidated by UGT 1A8, 1A9, and 1A10; further important UGTs were UGT 1A1, 1A7, and 2B7. With respect to the sulfation reaction, SULT 1A1*2, 1A2, and 1E1 were the most active SULT forms. UGT 1A3, 1A4, and 1A6 as well as SULT 1A3 and 2A1 were of minor importance for the conjugation of XN. Three mono-glucuronides as well as three mono-sulfates were identified. Considering the tissue distribution of the tested UGT and SULT enzyme forms, these findings suggest a prominent role for the glucuronidation and sulfation of XN in the liver as well as in the gastrointestinal tract}, language = {en} } @article{WeinertWieseRaweletal.2012, author = {Weinert, Christoph H. and Wiese, Stefanie and Rawel, Harshadrai Manilal and Esatbeyoglu, Tuba and Winterhalter, Peter and Homann, Thomas and Kulling, Sabine E.}, title = {Methylation of catechins and procyanidins by rat and human Catechol-O-Methyltransferase metabolite profiling and molecular modeling studies}, series = {Drug metabolism and disposition : the biological fate of chemicals}, volume = {40}, journal = {Drug metabolism and disposition : the biological fate of chemicals}, number = {2}, publisher = {American Society for Pharmacology and Experimental Therapeutics}, address = {Bethesda}, issn = {0090-9556}, doi = {10.1124/dmd.111.041871}, pages = {353 -- 359}, year = {2012}, abstract = {Catechins and procyanidins are major polyphenols in plant-derived foods. Despite intensive studies in recent years, neither their biochemical nor their toxicological properties have been clarified sufficiently. This study aimed to compare the methylation of catechins and procyanidins by the enzyme catechol-O-methyltransferase (COMT) in vitro. We conducted incubations with rat liver cytosol and human placental cytosol including S-adenosyl-L-methionine. The set of substrates comprised the catechins (-)-epicatechin (EC) and (+)catechin (CAT), the procyanidin dimers B1, B2, B3, B4, B5, and B7 as well as procyanidin trimer C1. After extraction, metabolites were analyzed by means of liquid chromatography-electrospray ionizationmass spectrometry and liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. EC and CAT were converted to two monomethylated metabolites each by human and rat COMT, with the 3'-O-methyl derivatives being consistently the main metabolites. Furthermore, the flavanyl units of procyanidins were methylated consecutively, leading to monomethylated and dimethylated dimeric metabolites as well as monomethylated, dimethylated, and trimethylated C1 metabolites. The methylation status of each flavanyl unit was determined by means of mass spectrometric quinone-methide fragmentation patterns. In addition, molecular modeling studies were performed with the aim to predict the preferred site of methylation and to verify the experimental data. In conclusion, our results indicate that the degree and position of methylation depend clearly on the three-dimensional structure of the entire substrate molecule.}, language = {en} } @article{SiciliaBubRechkemmeretal.2005, author = {Sicilia, T. and Bub, Achim and Rechkemmer, G. and Kraemer, K. and Hoppe, P. P. and Kulling, Sabine E.}, title = {Novel lycopene metabolites are detectable in plasma of preruminant calves after lycopene supplementation}, issn = {0022-3166}, year = {2005}, abstract = {Appropriate animal models such as preruminant calves are necessary to study the complex physiological functions of carotenoids and to relate them to possible health effects in humans. In this study, the bioavailability and metabolism of lycopene from 2 dietary supplements were compared. LycoVit (R) containing synthetic lycopene and Lyc-O- Mato (R) containing natural tomato oleoresin were administered to 2 groups of preruminant calves (each n = 8) for 14 d in daily doses of 15 mg of lycopene. Plasma was analyzed for carotenoids before the intervention period, directly after, and each day for 5 d after the end of the intervention. All-trans and 5-cis lycopene, and 3 lycopene metabolites not previously found in calf plasma were detected. These metabolites contributed 52\% of the total lycopene content measured at the end of the intervention period. Based on spectroscopic data, they might be hydrogenation products, which are formed from all-trans and/or 5-cis lycopene. In the LycoVit group, total lycopene concentrations were similar to 300\% higher (286 +/- 89 nmol/L) than in the Lyc-O-Mato group (72 33 nmol/L) (P < 0.001). This indicates that, unlike in humans, lycopene from LycoVit and Lyc-O-Mato does not have equal bioavailabilities in preruminant calves. Therefore, the preruminant calf may not be a suitable animal model with which to study the biological and physiological effects of lycopene}, language = {en} } @article{WieseGaertnerRaweletal.2009, author = {Wiese, Stefanie and Gaertner, Sonja and Rawel, Harshadrai Manilal and Winterhalter, Peter and Kulling, Sabine E.}, title = {Protein interactions with cyanidin-3-glucoside and its influence on alpha-amylase activity}, issn = {0022-5142}, doi = {10.1002/Jsfa.3407}, year = {2009}, abstract = {BACKGROUND: Recent studies indicate that the bioavailability of anthocyanins is extremely low. One of the possible reasons could be their binding to proteins. Therefore, the binding affinity of cyanidin-3-glucoside (Cy3glc) to HSA and alpha-amylase was investigated by the quenching of protein tryptophan fluorescence. From data obtained, the binding constants and the free Gibbs energy were calculated. The changes in conformation of the proteins tested were studied with circular dichroism and the influence of binding on alpha-amylase activity determined. RESULTS: Cy3glc quenched the tryptophan fluorescence and upon ligand binding a change in protein structure was observed related to the corresponding decrease in the et-amylase activity. The association constants of 25 to 77 x 10(3) L mol(-1) were calculated for different proteins, indicating weak interactions of non-covalent nature. Competitive binding with HSA in the presence of 8-anilino-1-naphthalene sulfonic acid suggest involvement of hydrophobic interactions, in the case of HSA the possible site being subdomain IIA. CONCLUSION: The strongest affinity of Cy3glc for HSA being at pH 7 underlines its potential in transport and distribution of the phenolic compounds in organisms. An influence on salivary amylase activity is possible when drinking berry juices with high anthocyanins content.}, language = {en} } @article{RueferKullingMoesenederetal.2009, author = {Ruefer, Corinna E. and Kulling, Sabine E. and Moeseneder, Jutta and Winterhalter, Peter and Bub, Achim}, title = {Role of plasma lipoproteins in the transport of the soyabean isoflavones daidzein and daidzein-7-O-beta-D- glucoside}, issn = {0007-1145}, doi = {10.1017/S0007114509297224}, year = {2009}, abstract = {Isoflavone intake is associated with various properties beneficial to human health which are related to their antioxidant activity, for example, to their ability to increase LDL oxidation resistance. However, the distribution of isoflavones among plasma lipoproteins has not yet been elucidated in vivo. Therefore, the objective of the present study was to investigate the association between daidzein (DAI) and lipoproteins in human plasma upon administration of the aglycone and glucoside form. Five men aged 22-30 years participated in a randomised, double-blind study in cross-over design. After ingestion of DAI and daidzein-7-O-beta-D-glucoside (DG) (1 mg DAI aglycone equivalents/kg body weight) blood samples were drawn before isoflavone administration as well as 1, 2, 3, 4.5, 6, 8, 10, 12, 24 and 48 h post-dose. Concentrations of DAI in the different lipoprotein fractions (chylomicrons, VLDL, LDL, HDL) and in the non-lipoprotein fraction were analysed using isotope dilution capillary GUMS. The lipoprotein fraction profiles were similar for all subjects and resembled those obtained for plasma in our previously published study. The lipoprotein distribution based on the area under the concentration-time profiles from 0 h to infinity in the different fractions were irrespective of the administered form: non-lipoprotein fraction (53\%) > LDL (20\%) > HDL (14\%) > VLDL (9-5\%) > chylomicrons (2-5\%). Of DAI present in plasma, 47\% was associated to lipoproteins. Concentrations in the different lipoprotein fractions as well as in the non-lipoprotein fraction were always higher after the ingestion of DG than of DAI. Taken together, these results demonstrate an association between isoflavones and plasma lipoproteins in vivo.}, language = {en} } @article{FleschhutKratzerRechkemmeretal.2006, author = {Fleschhut, Jens and Kratzer, Frank and Rechkemmer, Gerhard and Kulling, Sabine E.}, title = {Stability and biotransformation of various dietary anthocyanins in vitro}, issn = {1436-6207}, doi = {10.1007/s00394-005-0557-8}, year = {2006}, abstract = {Background Anthocyanins, which are found in high concentrations in fruit and vegetable, may play a beneficial role in retarding or reversing the course of chronic degenerative diseases. However, little is known about the biotransformation and the metabolism of anthocyanins so far. Aim of the study The aim of the study was to investigate possible transformation pathways of anthocyanins by human faecal microflora and by rat liver microsomes as a source of cytochrome P450 enzymes as well as of glucuronyltransferases. Methods Pure anthocyanins, an aqueous extract of red radish as well as the assumed degradation products were incubated with human faecal suspension. The incubation mixtures were purified by solid-phase extraction and analysed by HPLC/DAD/MS and GC/MS. Quantification was done by the external standard method. Furthermore the biotransformation of anthocyanins by incubation with rat liver microsomes in the presence of the cofactor NADPH (as a model for the phase I oxidation) and in the presence of activated glucuronic acid (as a model for the phase II glucuronidation) was investigated. Results Glycosylated and acylated anthocyanins were rapidly degraded by the intestinal microflora after anaerobic incubation with a human faecal suspension. The major stable products of anthocyanin degradation are the corresponding phenolic acids derived from the B-ring of the anthocyanin skeleton. Anthocyanins were not metabolised by cytochrome P450 enzymes, neither hydroxylated nor demethylated. However they were glucuronidated by rat liver microsomes to several products. Conclusions The gut microflora seem to play an important role in the biotransformation of anthocyanins. A rapid degradation could be one major reason for the poor bioavailability of anthocyanins in pharmacokinetic studies described so far in the literature. The formation of phenolic acids as the major stable degradation products gives an important hint to the fate of anthocyanins in vivo}, language = {en} } @article{RuferGlattKulling2006, author = {Rufer, CE and Glatt, Hansruedi and Kulling, Sabine E.}, title = {Structural elucidation of hydroxylated metabolites of the isoflavan equol by gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry}, doi = {10.1124/dmd.105.004929}, year = {2006}, abstract = {Equol has, as have other isoflavonoids, recently gained considerable interest due to its possible health effects. However, detailed studies on the metabolism of equol are scarce. Therefore, we investigated the phase I metabolism of equol using liver microsomes from Aroclor-treated male Wistar rats as well as from a male human. The identification of the metabolites formed was elucidated using high performance liquid chromatography ( HPLC) with diode array detection, HPLC/atmospheric pressure ionization electrospray mass spectrometry, and gas chromatography-mass spectrometry, as well as reference compounds. ( +/-)-Equol was converted to 11 metabolites by the liver microsomes from Aroclorpretreated rats comprising three aromatic monohydroxylated and four aliphatic monohydroxylated as well as four dihydroxylated products. The main metabolite was identified as 3'-hydroxy-equol. Using human liver microsomes, equol was converted to six metabolites with 3'-hydroxy- and 6-hydroxy-equol as main products. Furthermore, the aliphatic hydroxylated metabolite 4-hydroxyequol, which was recently detected in human urine after soy consumption, was formed. On the basis of these findings, it is suggested that phase I metabolism of equol is part of a complex biotransformation of the soy isoflavone daidzein in humans in vivo}, language = {en} } @article{BrauneMaulSchebbetal.2010, author = {Braune, Annett and Maul, Ronald and Schebb, Nils Helge and Kulling, Sabine E. and Blaut, Michael}, title = {The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota}, issn = {1613-4125}, doi = {10.1002/mnfr.200900233}, year = {2010}, abstract = {Intestinal bacteria may influence bioavailability and physiological activity of dietary isoflavones. We therefore investigated the ability of human intestinal microbiota to convert irilone and genistein in vitro. In contrast to genistein, irilone was largely resistant to transformation by fecal slurries of ten human subjects. The fecal microbiota converted genistein to dihydrogenistein, 6'-hydroxy-O-desmethylangolensin, and 2-(4-hydroxyphenyl)- propionic acid. However, considerable interindividual differences in the rate of genistein degradation and the pattern of metabolites formed from genistein were observed. Only one metabolite, namely dihydroirilone, was formed from irilone in minor amounts. In further experiments, Eubacterium ramulus, a prevalent flavonoid-degrading species of the human gut, was tested for transformation of irilone. In contrast to genistein, irilone was not converted by E. ramulus. Irilone only differs from genistein by a methylenedioxy group attached to the A-ring of the isoflavone skeleton. This substitution obviously restricts the degradability of irilone by human intestinal bacteria.}, language = {en} }