@article{RisseHohensteinKliegletal.2014, author = {Risse, Sarah and Hohenstein, Sven and Kliegl, Reinhold and Engbert, Ralf}, title = {A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm}, series = {Visual cognition}, volume = {22}, journal = {Visual cognition}, number = {3-4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1350-6285}, doi = {10.1080/13506285.2014.881444}, pages = {283 -- 308}, year = {2014}, abstract = {Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words.}, language = {en} } @article{RisseKliegl2011, author = {Risse, Sarah and Kliegl, Reinhold}, title = {Adult age difference in the perceptual span during reading}, year = {2011}, abstract = {Following up on research suggesting an age-related reduction in the rightward extent of the perceptual span during reading (Rayner, Castelhano, \& Yang, 2009), we compared old and young adults in an N + 2-boundary paradigm in which a nonword preview of word N + 2 or word N + 2 itself is replaced by the target word once the eyes cross an invisible boundary located after word N. The intermediate word N + 1 was always three letters long. Gaze durations on word N + 2 were significantly shorter for identical than nonword N + 2 preview both for young and for old adults, with no significant difference in this preview benefit. Young adults, however, did modulate their gaze duration on word N more strongly than old adults in response to the difficulty of the parafoveal word N + 1. Taken together, the results suggest a dissociation of preview benefit and parafoveal-on-foveal effect. Results are discussed in terms of age-related decline in resilience towards distributed processing while simultaneously preserving the ability to integrate parafoveal information into foveal processing. As such, the present results relate to proposals of regulatory compensation strategies older adults use to secure an overall reading speed very similar to that of young adults. (PsycINFO Database Record (c) 2011 APA, all rights reserved)}, language = {en} } @misc{RisseKliegl2011, author = {Risse, Sarah and Kliegl, Reinhold}, title = {Adult age differences in the perceptual span during reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56935}, year = {2011}, abstract = {Following up on research suggesting an age-related reduction in the rightward extent of the perceptual span during reading (Rayner, Castelhano, \& Yang, 2009), we compared old and young adults in an N+2-boundary paradigm in which a nonword preview of word N+2 or word N+2 itself is replaced by the target word once the eyes cross an invisible boundary located after word N. The intermediate word N+1 was always three letters long. Gaze durations on word N+2 were significantly shorter for identical than nonword N+2 preview both for young and for old adults with no significant difference in this preview benefit. Young adults, however, did modulate their gaze duration on word N more strongly than old adults in response to the difficulty of the parafoveal word N+1. Taken together, the results suggest a dissociation of preview benefit and parafoveal-on-foveal effect. Results are discussed in terms of age-related decline in resilience towards distributed processing while simultaneously preserving the ability to integrate parafoveal information into foveal processing. As such, the present results relate to proposals of regulatory compensation strategies older adults use to secure an overall reading speed very similar to that of young adults.}, language = {en} } @article{RisseKliegl2011, author = {Risse, Sarah and Kliegl, Reinhold}, title = {Adult age differences in the perceptual span during reading}, series = {Psychology and aging}, volume = {26}, journal = {Psychology and aging}, number = {2}, publisher = {American Psychological Association}, address = {Washington}, issn = {0882-7974}, doi = {10.1037/a0021616}, pages = {451 -- 460}, year = {2011}, abstract = {Following up on research suggesting an age-related reduction in the rightward extent of the perceptual span during reading (Rayner, Castelhano, \& Yang, 2009), we compared old and young adults in an N + 2-boundary paradigm in which a nonword preview of word N + 2 or word N + 2 itself is replaced by the target word once the eyes cross an invisible boundary located after word N. The intermediate word N + I was always three letters long. Gaze durations on word N + 2 were significantly shorter for identical than nonword N + 2 preview both for young and for old adults, with no significant difference in this preview benefit. Young adults, however, did modulate their gaze duration on word N more strongly than old adults in response to the difficulty of the parafoveal word N + I. Taken together, the results suggest a dissociation of preview benefit and parafoveal-on-foveal effect. Results are discussed in terms of age-related decline in resilience towards distributed processing while simultaneously preserving the ability to integrate parafoveal information into foveal processing. As such, the present results relate to proposals of regulatory compensation strategies older adults use to secure an overall reading speed very similar to that of young adults.}, language = {en} } @article{SeeligRabeMalemShinitskietal.2020, author = {Seelig, Stefan A. and Rabe, Maximilian Michael and Malem-Shinitski, Noa and Risse, Sarah and Reich, Sebastian and Engbert, Ralf}, title = {Bayesian parameter estimation for the SWIFT model of eye-movement control during reading}, series = {Journal of mathematical psychology}, volume = {95}, journal = {Journal of mathematical psychology}, publisher = {Elsevier}, address = {San Diego}, issn = {0022-2496}, doi = {10.1016/j.jmp.2019.102313}, pages = {32}, year = {2020}, abstract = {Process-oriented theories of cognition must be evaluated against time-ordered observations. Here we present a representative example for data assimilation of the SWIFT model, a dynamical model of the control of fixation positions and fixation durations during natural reading of single sentences. First, we develop and test an approximate likelihood function of the model, which is a combination of a spatial, pseudo-marginal likelihood and a temporal likelihood obtained by probability density approximation Second, we implement a Bayesian approach to parameter inference using an adaptive Markov chain Monte Carlo procedure. Our results indicate that model parameters can be estimated reliably for individual subjects. We conclude that approximative Bayesian inference represents a considerable step forward for computational models of eye-movement control, where modeling of individual data on the basis of process-based dynamic models has not been possible so far.}, language = {en} } @article{RisseKliegl2014, author = {Risse, Sarah and Kliegl, Reinhold}, title = {Dissociating preview validity and preview difficulty in parafoveal processing of word n+1 during reading}, series = {Journal of experimental psychology : Human perception and performance}, volume = {40}, journal = {Journal of experimental psychology : Human perception and performance}, number = {2}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-1523}, doi = {10.1037/a0034997}, pages = {653 -- 668}, year = {2014}, abstract = {Many studies have shown that previewing the next word n + 1 during reading leads to substantial processing benefit (e.g., shorter word viewing times) when this word is eventually fixated. However, evidence of such preprocessing in fixations on the preceding word n when in fact the information about the preview is acquired is far less consistent. A recent study suggested that such effects may be delayed into fixations on the next word n + 1 (Risse \& Kliegl, 2012). To investigate the time course of parafoveal information-acquisition on the control of eye movements during reading, we conducted 2 gaze-contingent display-change experiments and orthogonally manipulated the processing difficulty (i.e., word frequency) of an n + 1 preview word and its validity relative to the target word. Preview difficulty did not affect fixation durations on the pretarget word n but on the target word n + 1. In fact, the delayed preview-difficulty effect was almost of the same size as the preview benefit associated with the n + 1 preview validity. Based on additional results from quantile-regression analyses on the time course of the 2 preview effects, we discuss consequences as to the integration of foveal and parafoveal information and potential implications for computational models of eye guidance in reading.}, language = {en} } @article{Risse2014, author = {Risse, Sarah}, title = {Effects of visual span on reading speed and parafoveal processing in eye movements during sentence reading}, series = {Journal of vision}, volume = {14}, journal = {Journal of vision}, number = {8}, publisher = {Association for Research in Vision and Opthalmology}, address = {Rockville}, issn = {1534-7362}, doi = {10.1167/14.8.11}, pages = {13}, year = {2014}, language = {en} } @article{RisseKliegl2012, author = {Risse, Sarah and Kliegl, Reinhold}, title = {Evidence for delayed Parafoveal-on-Foveal effects from word n+2 in reading}, series = {Journal of experimental psychology : Human perception and performance}, volume = {38}, journal = {Journal of experimental psychology : Human perception and performance}, number = {4}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-1523}, doi = {10.1037/a0027735}, pages = {1026 -- 1042}, year = {2012}, abstract = {During reading information is acquired from word(s) beyond the word that is currently looked at. It is still an open question whether such parafoveal information can influence the current viewing of a word, and if so, whether such parafoveal-on-foveal effects are attributable to distributed processing or to mislocated fixations which occur when the eyes are directed at a parafoveal word but land on another word instead. In two display-change experiments, we orthogonally manipulated the preview and target difficulty of word n+2 to investigate the role of mislocated fixations on the previous word n+1. When the eyes left word n, an easy or difficult word n+2 preview was replaced by an easy or difficult n+2 target word. In Experiment 1, n+2 processing difficulty was manipulated by means of word frequency (i.e., easy high-frequency vs. difficult low-frequency word n+2). In Experiment 2, we varied the visual familiarity of word n+2 (i.e., easy lower-case vs. difficult alternating-case writing). Fixations on the short word n+1, which were likely to be mislocated, were nevertheless not influenced by the difficulty of the adjacent word n+2, the hypothesized target of the mislocated fixation. Instead word n+1 was influenced by the preview difficulty of word n+2, representing a delayed parafoveal-on-foveal effect. The results challenge the mislocated-fixation hypothesis as an explanation of parafoveal-on-foveal effects and provide new insight into the complex spatial and temporal effect structure of processing inside the perceptual span during reading.}, language = {en} } @article{RisseEngbertKliegl2008, author = {Risse, Sarah and Engbert, Ralf and Kliegl, Reinhold}, title = {Eye-movement control in reading : experimental and corpus-analysis challenges for a computational model}, isbn = {978-7-201-06107-8}, year = {2008}, language = {en} } @inproceedings{Risse2012, author = {Risse, Sarah}, title = {Letter crowding and the benefit of parafoveal preview during reading}, series = {Perception}, volume = {41}, booktitle = {Perception}, publisher = {Sage Publ.}, address = {London}, issn = {0301-0066}, pages = {133 -- 133}, year = {2012}, language = {en} } @article{RisseKruegelBackhaus2022, author = {Risse, Sarah and Kr{\"u}gel, Andre and Backhaus, Daniel}, title = {Open Education in Methods Training}, series = {Psychologische Rundschau : offizielles Organ der Deutschen Gesellschaft f{\"u}r Psychologie}, volume = {73}, journal = {Psychologische Rundschau : offizielles Organ der Deutschen Gesellschaft f{\"u}r Psychologie}, number = {3}, publisher = {HOGREFE VERLAG}, address = {G{\"o}ttingen}, issn = {0033-3042}, doi = {10.1026/0033-3042/a000602}, pages = {206 -- 208}, year = {2022}, language = {en} } @misc{SeeligRisseEngbert2021, author = {Seelig, Stefan and Risse, Sarah and Engbert, Ralf}, title = {Predictive modeling of parafoveal information processing during reading}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52666}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526665}, pages = {11}, year = {2021}, abstract = {Skilled reading requires information processing of the fixated and the not-yet-fixated words to generate precise control of gaze. Over the last 30 years, experimental research provided evidence that word processing is distributed across the perceptual span, which permits recognition of the fixated (foveal) word as well as preview of parafoveal words to the right of fixation. However, theoretical models have been unable to differentiate the specific influences of foveal and parafoveal information on saccade control. Here we show how parafoveal word difficulty modulates spatial and temporal control of gaze in a computational model to reproduce experimental results. In a fully Bayesian framework, we estimated model parameters for different models of parafoveal processing and carried out large-scale predictive simulations and model comparisons for a gaze-contingent reading experiment. We conclude that mathematical modeling of data from gaze-contingent experiments permits the precise identification of pathways from parafoveal information processing to gaze control, uncovering potential mechanisms underlying the parafoveal contribution to eye-movement control.}, language = {en} } @article{SeeligRisseEngbert2021, author = {Seelig, Stefan and Risse, Sarah and Engbert, Ralf}, title = {Predictive modeling of parafoveal information processing during reading}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {Berlin}, issn = {2045-2322}, pages = {9}, year = {2021}, abstract = {Skilled reading requires information processing of the fixated and the not-yet-fixated words to generate precise control of gaze. Over the last 30 years, experimental research provided evidence that word processing is distributed across the perceptual span, which permits recognition of the fixated (foveal) word as well as preview of parafoveal words to the right of fixation. However, theoretical models have been unable to differentiate the specific influences of foveal and parafoveal information on saccade control. Here we show how parafoveal word difficulty modulates spatial and temporal control of gaze in a computational model to reproduce experimental results. In a fully Bayesian framework, we estimated model parameters for different models of parafoveal processing and carried out large-scale predictive simulations and model comparisons for a gaze-contingent reading experiment. We conclude that mathematical modeling of data from gaze-contingent experiments permits the precise identification of pathways from parafoveal information processing to gaze control, uncovering potential mechanisms underlying the parafoveal contribution to eye-movement control.}, language = {en} } @article{SeeligRisseEngbert2021, author = {Seelig, Stefan and Risse, Sarah and Engbert, Ralf}, title = {Predictive modeling of parafoveal information processing during reading}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Nature Portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-92140-z}, pages = {9}, year = {2021}, abstract = {Skilled reading requires information processing of the fixated and the not-yet-fixated words to generate precise control of gaze. Over the last 30 years, experimental research provided evidence that word processing is distributed across the perceptual span, which permits recognition of the fixated (foveal) word as well as preview of parafoveal words to the right of fixation. However, theoretical models have been unable to differentiate the specific influences of foveal and parafoveal information on saccade control. Here we show how parafoveal word difficulty modulates spatial and temporal control of gaze in a computational model to reproduce experimental results. In a fully Bayesian framework, we estimated model parameters for different models of parafoveal processing and carried out large-scale predictive simulations and model comparisons for a gaze-contingent reading experiment. We conclude that mathematical modeling of data from gaze-contingent experiments permits the precise identification of pathways from parafoveal information processing to gaze control, uncovering potential mechanisms underlying the parafoveal contribution to eye-movement control.}, language = {en} } @misc{KlieglRisseLaubrock2007, author = {Kliegl, Reinhold and Risse, Sarah and Laubrock, Jochen}, title = {Preview Benefit and Parafoveal-on-Foveal Effects from Word N+2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57186}, year = {2007}, abstract = {Using the gaze-contingent boundary paradigm with the boundary placed after word n, we manipulated preview of word n+2 for fixations on word n. There was no preview benefit for first-pass reading on word n+2, replicating the results of Rayner, Juhasz, and Brown (2007), but there was a preview benefit on the three-letter word n+1, that is, after the boundary, but before word n+2. Additionally, both word n+1 and word n+2 exhibited parafoveal-on-foveal effects on word n. Thus, during a fixation on word n and given a short word n+1, some information is extracted from word n+2, supporting the hypothesis of distributed processing in the perceptual span.}, language = {en} } @article{KlieglRisseLaubrock2007, author = {Kliegl, Reinhold and Risse, Sarah and Laubrock, Jochen}, title = {Preview benefit and parafoveal-on-foveal effects from word n+2}, issn = {0096-1523}, doi = {10.1037/0096-1523.33.5.1250}, year = {2007}, abstract = {Using the gaze-contingent boundary paradigm with the boundary placed after word n, the experiment manipulated preview of word n + 2 for fixations on word n. There was no preview benefit for 1st-pass reading on word n + 2, replicating the results of K. Rayner, B. J. Juhasz, and S. J. Brown (2007), but there was a preview benefit on the 3- letter word n + 1, that is, after the boundary but before word n + 2. Additionally, both word n + 1 and word n + 2 exhibited parafoveal-on-foveal effects on word n. Thus, during a fixation on word n and given a short word n + 1, some information is extracted from word n + 2, supporting the hypothesis of distributed processing in the perceptual span.}, language = {en} } @article{YanRisseZhouetal.2012, author = {Yan, Ming and Risse, Sarah and Zhou, Xiaolin and Kliegl, Reinhold}, title = {Preview fixation duration modulates identical and semantic preview benefit in Chinese reading}, series = {Reading and writing : an interdisciplinary journal}, volume = {25}, journal = {Reading and writing : an interdisciplinary journal}, number = {5}, publisher = {Springer}, address = {Dordrecht}, issn = {0922-4777}, doi = {10.1007/s11145-010-9274-7}, pages = {1093 -- 1111}, year = {2012}, abstract = {Semantic preview benefit from parafoveal words is critical for proposals of distributed lexical processing during reading. Semantic preview benefit has been demonstrated for Chinese reading with the boundary paradigm in which unrelated or semantically related previews of a target word N + 1 are replaced by the target word once the eyes cross an invisible boundary located after word N (Yan et al., 2009); for the target word in position N + 2, only identical compared to unrelated-word preview led to shorter fixation times on the target word (Yan et al., in press). A reanalysis of these data reveals that identical and semantic preview benefits depend on preview duration (i.e., the fixation duration on the preboundary word). Identical preview benefit from word N + 1 increased with preview duration. The identical preview benefit was also significant for N + 2, but did not significantly interact with preview duration. The previously reported semantic preview benefit from word N + 1 was mainly due to single- or first-fixation durations following short previews. We discuss implications for notions of serial attention shifts and parallel distributed processing of words during reading.}, language = {en} } @phdthesis{Risse2011, author = {Risse, Sarah}, title = {Processing in the perceptual span : investigations with the n+2-boundary paradigm}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60414}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Cognitive psychology is traditionally interested in the interaction of perception, cognition, and behavioral control. Investigating eye movements in reading constitutes a field of research in which the processes and interactions of these subsystems can be studied in a well-defined environment. Thereby, the following questions are pursued: How much information is visually perceived during a fixation, how is processing achieved and temporally coordinated from visual letter encoding to final sentence comprehension, and how do such processes reflect on behavior such as the control of the eyes' movements during reading. Various theoretical models have been proposed to account for the specific eye-movement behavior in reading (for a review see Reichle, Rayner, \& Pollatsek, 2003). Some models are based on the idea of shifting attention serially from one word to the next within the sentence whereas others propose distributed attention allocating processing resources to more than one word at a time. As attention is assumed to drive word recognition processes one major difference between these models is that word processing must either occur in strict serial order, or that word processing is achieved in parallel. In spite of this crucial difference in the time course of word processing, both model classes perform well on explaining many of the benchmark effects in reading. In fact, there seems to be not much empirical evidence that challenges the models to a point at which their basic assumptions could be falsified. One issue often perceived as being decisive in the debate on serial and parallel word processing is how not-yet-fixated words to the right of fixation affect eye movements. Specifically, evidence is discussed as to what spatial extent such parafoveal words are previewed and how this influences current and subsequent word processing. Four experiments investigated parafoveal processing close to the spatial limits of the perceptual span. The present work aims to go beyond mere existence proofs of previewing words at such spatial distances. Introducing a manipulation that dissociates the sources of long-range preview effects, benefits and costs of parafoveal processing can be investigated in a single analysis and the differing impact is tracked across a three-word target region. In addition, the same manipulation evaluates the role of oculomotor error as the cause of non-local distributed effects. In this respect, the results contribute to a better understanding of the time course of word processing inside the perceptual span and attention allocation during reading.}, language = {en} } @article{RisseSeelig2019, author = {Risse, Sarah and Seelig, Stefan}, title = {Stable preview difficulty effects in reading with an improved variant of the boundary paradigm}, series = {The quarterly journal of experimental psychology}, volume = {72}, journal = {The quarterly journal of experimental psychology}, number = {7}, publisher = {Sage Publ.}, address = {London}, issn = {1747-0218}, doi = {10.1177/1747021818819990}, pages = {1632 -- 1645}, year = {2019}, abstract = {Using gaze-contingent display changes in the boundary paradigm during sentence reading, it has recently been shown that parafoveal word-processing difficulties affect fixations on words to the right of the boundary. Current interpretations of this post-boundary preview difficulty effect range from delayed parafoveal-on-foveal effects in parallel word-processing models to forced fixations in serial word-processing models. However, these findings are based on an experimental design that, while allowing to isolate preview difficulty effects, might have established a bias with respect to asymmetries in parafoveal preview benefit for high-frequent and low-frequent target words. Here, we present a revision of this paradigm varying the preview's lexical frequency and keeping the target word constant. We found substantial effects of the preview difficulty in fixation durations after the boundary confirming that preview processing affects the oculomotor decisions not only via trans-saccadic integration of preview and target word information. An additional time-course analysis showed that the preview difficulty effect was significant across the full fixation duration distribution on the target word without any evidence on the pretarget word before the boundary. We discuss implications of the accumulating evidence of post-boundary preview difficulty effects for models of eye movement control during reading.}, language = {en} } @article{KleinKruegelRisseetal.2015, author = {Klein, Angela Ines and Kruegel, Andre and Risse, Sarah and Esser, G{\"u}nter and Engbert, Ralf and Pereira, Vera Wannmacher}, title = {The processing of pronominal anaphora by children that have attention deficit hyperactivity disorder or dyslexia: a study through the analysis of eye movements}, series = {Letras de hoje}, volume = {50}, journal = {Letras de hoje}, number = {1}, publisher = {PUCRS}, address = {Porto Alegre}, issn = {0101-3335}, pages = {40 -- 48}, year = {2015}, abstract = {The aim of this work was to verify the processing of pronominal anaphora by children that have attention deficit hyperactivity disorder or dyslexia. The sample studied consisted of 75 children that speak German, which read two texts of 80 words containing pronominal anaphora. The eye movements of all participants were recorded and, to make sure they were reading with attention, two activities that tested reading comprehension were proposed. Through the analysis of eye movements, specifically the fixations, the data indicate that children with disorders have difficulty to process the pronominal anaphora, especially dyslexic children.}, language = {it} }