@article{HentrichTaabacheBrezesinskietal.2017, author = {Hentrich, Doreen and Taabache, Soraya and Brezesinski, Gerald and Lange, Nele and Unger, Wolfgang and Kuebel, Christian and Bertin, Annabelle and Taubert, Andreas}, title = {A Dendritic Amphiphile for Efficient Control of Biomimetic Calcium Phosphate Mineralization}, series = {Macromolecular bioscience}, volume = {17}, journal = {Macromolecular bioscience}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201600524}, pages = {2541 -- 2548}, year = {2017}, abstract = {The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air-liquid interface. The amphiphile forms stable monomolecular films at the airliquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects.}, language = {en} } @article{HentrichBrezesinskiKuebeletal.2017, author = {Hentrich, Doreen and Brezesinski, Gerald and Kuebel, Christian and Bruns, Michael and Taubert, Andreas}, title = {Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and Growth}, series = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, volume = {17}, journal = {Crystal growth \& design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials}, publisher = {American Chemical Society}, address = {Washington}, issn = {1528-7483}, doi = {10.1021/acs.cgd.7b00753}, pages = {5764 -- 5774}, year = {2017}, abstract = {The article describes the phase behavior of cholesteryl hemisuccinate at the air-liquid interface and its effect on calcium phosphate (CP) mineralization. The amphiphile forms stable monolayers with phase transitions at the air-liquid interface from a gas to a tilted liquid-condensed (TLC) and finally to an untilted liquid-condensed (ULC) phase. CP mineralization beneath these monolayers leads to crumpled CP layers made from individual plates. The main crystal phase is octacalcium phosphate (OCP) along with a minor fraction of hydroxyapatite (HAP), as confirmed by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, bright field transmission electron microscopy, and electron diffraction.}, language = {en} } @misc{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1095}, issn = {1866-8372}, doi = {10.25932/publishup-46918}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469186}, pages = {23}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} } @article{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Biomimetics}, volume = {2}, journal = {Biomimetics}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2313-7673}, doi = {10.3390/biomimetics2040024}, pages = {21}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} } @phdthesis{Hentrich2017, author = {Hentrich, Doreen}, title = {Grenzfl{\"a}chen-kontrollierte Mineralisation von Calciumphosphat}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398236}, school = {Universit{\"a}t Potsdam}, pages = {163}, year = {2017}, abstract = {In der vorliegenden Arbeit konnte gezeigt werden, dass die beiden verwendeten Amphiphile mit Cholesterol als hydrophoben Block, gute Template f{\"u}r die Mineralisation von Calciumphosphat an der Wasser/Luft-Grenzfl{\"a}che sind. Mittels Infrarot-Reflexions-Absorptions-Spektroskopie (IRRAS), R{\"o}ntgenphotoelektronenspektroskopie (XPS), Energie dispersiver R{\"o}ntgenspektroskopie (EDXS), Elektronenbeugung (SAED) und hochaufl{\"o}sende Transmissionselektronenmikroskopie (HRTEM) konnte die erfolgreiche Mineralisation von Calciumphosphat f{\"u}r beide Amphiphile an der Wasser/Luft-Grenzfl{\"a}che nachgewiesen werden. Es konnte auch gezeigt werden, dass das Phasenverhalten der beiden Amphiphile und die bei der Mineralisation von Calciumphosphat gebildeten Kristallphasen nicht identisch sind. Beide Amphiphile {\"u}ben demnach einen unterschiedlichen Einfluss auf den Mineralisationsverlauf aus. Beim CHOL-HEM konnte sowohl nach 3 h als auch nach 5 h Octacalciumphosphat (OCP) als einzige Kristallphase mittels XPS, SAED, HRTEM und EDXS nachgewiesen werden. Das A-CHOL hingegen zeigte bei der Mineralisation von Calciumphosphat nach 1 h zun{\"a}chst eine nicht eindeutig identifizierbare Vorl{\"a}uferphase aus amorphen Calciumphosphat, Brushit (DCPD) oder OCP. Diese wandelte sich dann nach 3 h und 5 h in ein Gemisch, bestehend aus OCP und ein wenig Hydroxylapatit (HAP) um. Die Schlussfolgerung daraus ist, dass das CHOL-HEM in der Lage ist, dass w{\"a}hrend der Mineralisation entstandene OCP zu stabilisieren. Dies geschieht vermutlich durch die Adsorption des Amphiphils bevorzugt an der OCP Oberfl{\"a}che in [100] Orientierung. Dadurch wird die Spaltung entlang der c-Achse unterdr{\"u}ckt und die Hydrolyse zum HAP verhindert. Das A-CHOL ist hingegen sterisch anspruchsvoller und kann wahrscheinlich aufgrund seiner Gr{\"o}ße nicht so gut an der OCP Kristalloberfl{\"a}che adsorbieren verglichen zum CHOL HEM. Das CHOL-HEM kann also die Hydrolyse von OCP zu HAP besser unterdr{\"u}cken als das A-CHOL. Da jedoch auch beim A-CHOL nach einer Mineralisationszeit von 5 h nur wenig HAP zu finden ist, w{\"a}re auch hier ein Stabilisierungseffekt der OCP Kristalle m{\"o}glich. Um eine genaue Aussage dar{\"u}ber treffen zu k{\"o}nnen, sind jedoch zus{\"a}tzliche Kontrollexperimente notwendig. Es w{\"a}re zum einen denkbar, die Mineralisationsexperimente {\"u}ber einen l{\"a}ngeren Zeitraum durchzuf{\"u}hren. Diese k{\"o}nnten zeigen, ob das CHOL-HEM die Hydrolyse vom OCP zum HAP komplett unterdr{\"u}ckt. Außerdem k{\"o}nnte nachgewiesen werden, ob beim A-CHOL das OCP weiter zum HAP umgesetzt wird oder ob ein Gemisch beider Kristallphasen erhalten bleibt. Um die Mineralisation an der Wasser/Luft-Grenzfl{\"a}che mit der Mineralisation in Bulkl{\"o}sung zu vergleichen, wurden zus{\"a}tzlich Mineralisationsexperimente in Bulkl{\"o}sung durchgef{\"u}hrt. Dazu wurden Nitrilotriessigs{\"a}ure (NTA) und Ethylendiamintetraessigs{\"a}ure (EDTA) als Mineralisationsadditive verwendet, da NTA unter anderem der Struktur der hydrophilen Kopfgruppe des A-CHOLs {\"a}hnelt. Es konnte gezeigt werden, dass ein Vergleich der Mineralisation an der Grenzfl{\"a}che mit der Mineralisation in Bulkl{\"o}sung nicht ohne weiteres m{\"o}glich ist. Bei der Mineralisation in Bulkl{\"o}sung wird bei tiefen pH-Werten DCPD und bei h{\"o}heren pH-Werten HAP gebildet. Diese wurde mittels R{\"o}ntgenpulverdiffraktometrie Messungen nachgewiesen und durch Infrarotspektroskopie bekr{\"a}ftigt. Die Bildung von OCP wie an der Wasser/Luft-Grenzfl{\"a}che konnte nicht beobachtet werden. Es konnte auch gezeigt werden, dass beide Additive NTA und EDTA einen unterschiedlichen Einfluss auf den Verlauf der Mineralisation nehmen. So unterscheiden sich zum einen die Morphologien des gebildeten DCPDs und zum anderen wurde beispielsweise in Anwesenheit von 10 und 15 mM NTA neben DCPD auch HAP bei einem Ausgangs-pH-Wert von 7 nachgewiesen. Da unser Augenmerk speziell auf der Mineralisation von Calciumphosphat an der Wasser/Luft-Grenzfl{\"a}che liegt, k{\"o}nnten Folgeexperimente wie beispielsweise GIXD Messungen durchgef{\"u}hrt werden. Dadurch w{\"a}re es m{\"o}glich, einen {\"U}berblick {\"u}ber die gebildeten Kristallphasen nach unterschiedlichen Reaktionszeiten direkt auf dem Trog zu erhalten. Es konnte weiterhin gezeigt werden, dass auch einfache Amphiphile in der Lage sind, die Mineralisation von Calciumphosphat zu steuern. Amphiphile mit Cholesterol als hydrophoben Block bilden offensichtlich besonders stabile Monolagen an der Wasser/Luft-Grenzfl{\"a}che. Eine Untersuchung des Einflusses {\"a}hnlicher Amphiphile mit unterschiedlichen hydrophilen Kopfgruppen auf das Mineralisationsverhalten von Calciumphosphat w{\"a}re durchaus interessant.}, language = {de} } @article{HentrichJungingerBrunsetal.2015, author = {Hentrich, Doreen and Junginger, Mathias and Bruns, Michael and B{\"o}rner, Hans Gerhard and Brandt, Jessica and Brezesinski, Gerald and Taubert, Andreas}, title = {Interface-controlled calcium phosphate mineralization}, series = {CrystEngComm}, journal = {CrystEngComm}, number = {17}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1466-8033}, doi = {10.1039/C4CE02274B}, pages = {6901 -- 6913}, year = {2015}, abstract = {The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH.}, language = {en} } @misc{HentrichJungingerBrunsetal.2015, author = {Hentrich, Doreen and Junginger, Mathias and Bruns, Michael and B{\"o}rner, Hans Gerhard and Brandt, Jessica and Brezesinski, Gerald and Taubert, Andreas}, title = {Interface-controlled calcium phosphate mineralization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89540}, pages = {6901 -- 6913}, year = {2015}, abstract = {The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH.}, language = {en} } @article{HentrichJungingerBrunsetal.2015, author = {Hentrich, Doreen and Junginger, Mathias and Bruns, Michael and Boerner, Hans G. and Brandt, Jessica and Brezesinski, Gerald and Taubert, Andreas}, title = {Interface-controlled calcium phosphate mineralization: effect of oligo(aspartic acid)-rich interfaces}, series = {CrystEngComm}, volume = {17}, journal = {CrystEngComm}, number = {36}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c4ce02274b}, pages = {6901 -- 6913}, year = {2015}, abstract = {The phase behavior of an amphiphilic block copolymer based on a poly(aspartic acid) hydrophilic block and a poly(n-butyl acrylate) hydrophobic block was investigated at the air-water and air-buffer interface. The polymer forms stable monomolecular films on both subphases. At low pH, the isotherms exhibit a plateau. Compression-expansion experiments and infrared reflection absorption spectroscopy suggest that the plateau is likely due to the formation of polymer bi- or multilayers. At high pH the films remain intact upon compression and no multilayer formation is observed. Furthermore, the mineralization of calcium phosphate beneath the monolayer was studied at different pH. The pH of the subphase and thus the polymer charge strongly affects the phase behavior of the film and the mineral formation. After 4 h of mineralization at low pH, atomic force microscopy shows smooth mineral films with a low roughness. With increasing pH the mineral films become inhomogeneous and the roughness increases. Transmission electron microscopy confirms this: at low pH a few small but uniform particles form whereas particles grown at higher pH are larger and highly agglomerated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirm the formation of calcium phosphate. The levels of mineralization are higher in samples grown at high pH.}, language = {en} } @misc{TaubertBalischewskiHentrichetal.2017, author = {Taubert, Andreas and Balischewski, Christian and Hentrich, Doreen and Elschner, Thomas and Eidner, Sascha and G{\"u}nter, Christina and Behrens, Karsten and Heinze, Thomas}, title = {Water-soluble cellulose derivatives are sustainable additives for biomimetic calcium phosphate mineralization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400453}, pages = {17}, year = {2017}, abstract = {The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10\% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.}, language = {en} } @article{TaubertBalischewskiHentrichetal.2016, author = {Taubert, Andreas and Balischewski, Christian and Hentrich, Doreen and Elschner, Thomas and Eidner, Sascha and G{\"u}nter, Christina and Behrens, Karsten and Heinze, Thomas}, title = {Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization}, series = {Inorganics : open access journal}, volume = {4}, journal = {Inorganics : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2304-6740}, doi = {10.3390/inorganics4040033}, pages = {17}, year = {2016}, abstract = {The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10\% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.}, language = {en} }