@article{SaremAryaHeizmannetal.2018, author = {Sarem, Melika and Arya, Neha and Heizmann, Miriam and Neffe, Axel T. and Barbero, Andrea and Gebauer, Tim P. and Martin, Ivan and Lendlein, Andreas and Shastri, V. Prasad}, title = {Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo}, series = {Acta biomaterialia}, volume = {69}, journal = {Acta biomaterialia}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2018.01.025}, pages = {83 -- 94}, year = {2018}, abstract = {The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineeredArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with the de novo formation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials. Statement of Significance In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two paradigms were explored (i) ex vivo engineering followed by in vivo implantation in ectopic site of nude mice and (ii) short in vitro culture (3 days) followed by implantation to induce de novo cartilage formation. Softer and fast degrading ArcGel were better at promoting chondrogenesis in vitro, while stiffer and slow degrading ArcGel were strikingly superior in both maintaining chondrogenesis in vivo and inducing de novo formation of cartilage. Our findings highlight the importance of the interplay between scaffold mechanics and degradation in chondrogenesis.}, language = {en} } @article{LuetzowHommesSchattmannNeffeetal.2018, author = {L{\"u}tzow, Karola and Hommes-Schattmann, Paul J. and Neffe, Axel T. and Ahmad, Bilal and Williams, Gareth R. and Lendlein, Andreas}, title = {Perfluorophenyl azide functionalization of electrospun poly(para-dioxanone)}, series = {Polymers for advanced technologies}, volume = {30}, journal = {Polymers for advanced technologies}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.4331}, pages = {1165 -- 1172}, year = {2018}, abstract = {Strategies to surface-functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para-dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half-life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N-hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X-ray photoelectron spectroscopy and attenuated total reflectance Fourier-transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N-hydroxysuccinimide esters on the surface of a PFPA-functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio-)functionalization of PPDO scaffolds.}, language = {en} } @article{PilusoVukicevieNoecheletal.2018, author = {Piluso, Susanna and Vukicevie, Radovan and N{\"o}chel, Ulrich and Braune, Steffen and Lendlein, Andreas and Neffe, Axel T.}, title = {Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation}, series = {European polymer journal}, volume = {100}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2018.01.017}, pages = {77 -- 85}, year = {2018}, abstract = {While click chemistry reactions for biopolymer network formation are attractive as the defined reactions may allow good control of the network formation and enable subsequent functionalization, tailoring of gelatin network properties over a wide range of mechanical properties has yet to be shown. Here, it is demonstrated that copper-catalyzed alkyne-azide cycloaddition of alkyne functionalized gelatin with diazides gave hydrogel networks with properties tailorable by the ratio of diazide to gelatin and diazide rigidity. 4,4′-diazido-2,2′-stilbenedisulfonic acid, which has been used as rigid crosslinker, yielded hydrogels with Young's moduli E of 50-390 kPa and swelling degrees Q of 150-250 vol.\%, while the more flexible 1,8-diazidooctane resulted in hydrogels with E = 125-280 kPa and Q = 225-470 vol.\%. Storage moduli could be varied by two orders of magnitude (G′ = 100-20,000 Pa). An indirect cytotoxicity test did not show cytotoxic properties. Even when employing 1:1 ratios of alkyne and azide moieties, the hydrogels were shown to contain both, unreacted alkyne groups on the gelatin backbone as well as dangling chains carrying azide groups as shown by reaction with functionalized fluorescein. The free groups, which can be tailored by the employed ratio of the reactants, are accessible for covalent attachment of drugs, as was demonstrated by functionalization with dexamethasone. The sequential network formation and functionalization with click chemistry allows access to multifunctional materials relevant for medical applications.}, language = {en} }