@article{YenesewTwinomuhweziKiremireetal.2009, author = {Yenesew, Abiy and Twinomuhwezi, Hannington and Kiremire, Bernard T. and Mbugua, Martin N. and Gitu, Peter M. and Heydenreich, Matthias and Peter, Martin G.}, title = {8-Methoxyneorautenol and radical scavenging flavonoids from Erythrina abyssinica}, issn = {1011-3924}, year = {2009}, abstract = {A new pterocarpan (named 8-methoxyneorautenol) was isolated from the acetone ext. of the root bark of Erythrina abyssinica. In addn., the known isoflavonoid derivs. eryvarin L, erycristagallin and shinpterocarpin were identified for the first time from the roots of this plant. The structures were detd. on the basis of spectroscopic evidence. The new compd. showed selective antimicrobial activity against Trichophyton mentagrophytes. The acetone ext. of the root bark of E. abyssinica showed radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The pterocarpenes, 3-hydroxy-9-methoxy-10-(3,3-dimethylallyl)pterocarpene and erycristagallin, were the most active constituents of the roots of this plant and showing dose-dependent activities similar to that of the std. quercetin. [on SciFinder (R)]}, language = {en} } @article{YenesewMushibeIndulietal.2005, author = {Yenesew, Abiy and Mushibe, E. K. and Induli, M. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Koch, Andreas and Peter, Martin G.}, title = {7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoloata}, issn = {0031-9422}, year = {2005}, abstract = {From the acetone extract of the roots of Derris trifoliata an isollavonoid derivative, named 7a-O- methyldeguelol, a modified rotenoid with an open ring-C, representing a new sub-class of isollavonoids (the sub-class is here named as rotenoloid), was isolated and characterised. In addition, the known rotenoids, rotenone, deguelin and alpha-toxicarol, were identified. The structures were determined on the basis of spectroscopic evidence. Rotenone and deguelin were identified as the larvicidal principles of the acetone extract of the roots of Derris trifoliata. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewMidiwoMeisneretal.1998, author = {Yenesew, Abiy and Midiwo, Jacob O. and Meisner, M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two prenylated flavanones from stem bark of erythrina burttii}, year = {1998}, language = {en} } @article{YenesewMidiwoHeydenreichetal.2000, author = {Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Schanzenbach, Dirk and Peter, Martin G.}, title = {Two Isoflavanones from the Stem Bark of Erythrina sacleuxii}, year = {2000}, abstract = {From the stem bark of Erythrina sacleuxii two new isoflavanones, (R)-5,7-dihydroxy-2',4',5'- trimethoxyisoflavanone (trivial name, (R)-2,3-dihydro-7-demethylrobustigenin) and (R)-5-hydroxy- 2',4',5'-trimethoxy-2'',2''- dimethylpyrano[5'',6'':6,7]isoflavanone (trivial name, (R)-saclenone) were isolated. In addition the known compounds shinpterocarpin, 2,3-dehydrokievitone, abyssinone V, abyssinone V-4'-methyl ether, erythrinasinate and 4'-O-methylsigmoidin B were isolated. The structures were determined on the basis of spectroscopic evidence.}, language = {en} } @article{YenesewMidiwoHeydenreichetal.1998, author = {Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G.}, title = {Four isoflavanones from stem bark of erythrina sacleuxii}, year = {1998}, language = {en} } @article{YenesewMidiwoGuchuetal.2002, author = {Yenesew, Abiy and Midiwo, Jacob O. and Guchu, S. M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Three iosoflav-3-enes and a 2-arylbenzofuran from the root bark of Erythrina burttii}, year = {2002}, abstract = {From the root bark of Erythrina burttii three new isoflav-3-enes, 7,4'-dihydroxy-2'-methoxy-6- (1'',1''-dimethylallyl)isoflav-3-ene (trivial name, burttinol-A), 4'-hydroxy-2'- methoxy-(2'',2''-dimethylpyrano[5'',6'':8,7]isoflav-3-ene (trivial name, burttinol-B), 7,4'-dihydroxy-2'-methoxy-8-(3'',3''-dimethylallyl)isoflav-3-ene (trivial name, burttinol-C), and a new 2-arylbenzofuran, 6,4'-dihydroxy-2'-methoxy-5- (1'',1''-dimethylallyl)-2-arylbenzofuran (trivial name, burttinol-D) were isolated. In addition, the known compounds, abyssinone V-4'-methyl ether, bidwillol A, calopocarpin, erybraedin A, erythrabyssin II, isobavachalcone, phaseollidin and phaseollin were identified. The structures were determined on the basis of spectroscopic evidence.}, language = {en} } @article{YenesewKiplagatDereseetal.2006, author = {Yenesew, Abiy and Kiplagat, John T. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata}, doi = {10.1016/j.phytochem.2006.01.002}, year = {2006}, abstract = {The crude methanol extract of the seeds of Derris trifoliata showed potent and dose dependent larvicidal activity against the 2nd instar larvae of Aedes aegypti. From this extract two unusual rotenoid derivatives, a rotenoloid (named 7a-O-methyl-12a-hydroxydeguelol) and a spirohomooxarotenoid (named spiro-13-homo-13-oxaelliptone), were isolated and characterised. In addition a rare natural chromanone (6,7-dimethoxy-4-chromanone) and the known rotenoids rotenone, tephrosin and dehydrodeguelin were identified. The structures were assigned on the basis of spectroscopic evidence. The larvicidal activity of the crude extract is mainly due to rotenone. (c) 2006 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewIrunguDereseetal.2003, author = {Yenesew, Abiy and Irungu, Beatrice and Derese, Solomon and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two prenylated flavonoids from the stem bark of Erythrina burttii}, year = {2003}, abstract = {From the stem bark of Erythrina burttii, a new isoflavone, 5,2',4'-trihydroxy-7-methoxy-6-(3- methylbut-2-enyl)isoflavone (trivial name, 7-O-methylluteone) and a new flavanone, 5,7-dihydroxy-4'-methoxy- 3'-(3-methylbutadienyl)-5'-(3-methylbut-2-enyl)flavanone (trivial name, burttinonedehydrate) along with three known isoflavonoids (8-prenylluteone, 3-O-methylcalopocarpin and genistein) were isolated. The structures were detd. on the basis of spectroscopic evidence.}, language = {en} } @article{YenesewInduliDereseetal.2004, author = {Yenesew, Abiy and Induli, M. and Derese, Solomon and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G. and Akala, Hoseah M. and Wangui, Julia and Liyala, Pamela and Waters, Norman C.}, title = {Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica}, issn = {0031-9422}, year = {2004}, abstract = {The ethyl acetate extract of the stem bark of Erythrina abyssinica showed anti-plasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 7.9 +/- 1.1 and 5.3 +/- 0.7 mug/ml, respectively. From this extract, a new chalcone, 2,3,4,4'-tetrahydroxy-5- prenylchalcone (trivial name 5-prenylbutein) and a new flavanone, 4',7-dihydroxy-3'-methoxy-5'- prenylflavanone (trivial name, 5-deoxyabyssinin II) along with known flavonoids have been isolated as the anti- plasmodial principles. The structures were determined on the basis of spectroscopic evidence. (C) 2004 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewDereseMidiwoetal.2005, author = {Yenesew, Abiy and Derese, Solomon and Midiwo, Jacob O. and Bii, Christine C. and Heydenreich, Matthias and Peter, Martin G.}, title = {Antimicrobial flavonoids from the stem bark of Erythrina burttii}, issn = {0367-326X}, year = {2005}, abstract = {The chloroform extract of the stem bark of Erythrina burttii showed antifungal and antibacterial activities using the disk diffusion method. Flavonoids were identified as the active principles. Activities were observed against fungi and Gram(+) bacteria, but the Gram(-) bacteria Escherichia coli was resistant. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{YaoubaKochGuantaietal.2018, author = {Yaouba, Souaibou and Koch, Andreas and Guantai, Eric M. and Derese, Solomon and Irungu, Beatrice and Heydenreich, Matthias and Yenesew, Abiy}, title = {Alkenyl cyclohexanone derivatives from Lannea rivae and Lannea schweinfurthii}, series = {Phytochemistry letters / Phytochemical Society of Europe}, volume = {23}, journal = {Phytochemistry letters / Phytochemical Society of Europe}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2017.12.001}, pages = {141 -- 148}, year = {2018}, abstract = {Phytochemical investigation of the CH2Cl2/MeOH (1:1) extract of the roots of Lannea rivae (Chiov) Sacleux (Anacardiaceae) led to the isolation of a new alkenyl cyclohexenone derivative: (4R,6S)-4,6-dihydroxy-6-((Z)-nonadec-14′-en-1-yl)cyclohex-2-en-1-one (1), and a new alkenyl cyclohexanol derivative: (2S*,4R*,5S*)-2,4,5-trihydroxy-2-((Z)-nonadec-14′-en-1-yl)cyclohexanone (2) along with four known compounds, namely epicatechin gallate, taraxerol, taraxerone and β-sitosterol; while the stem bark afforded two known compounds, daucosterol and lupeol. Similar investigation of the roots of Lannea schweinfurthii (Engl.) Engl. led to the isolation of four known compounds: 3-((E)-nonadec-16′-enyl)phenol, 1-((E)-heptadec-14′-enyl)cyclohex-4-ene-1,3-diol, catechin, and 1-((E)-pentadec-12′-enyl)cyclohex-4-ene-1,3-diol. The structures of the isolated compounds were determined by NMR spectroscopy and mass spectrometry. The absolute configuration of compound 1 was established by quantum chemical ECD calculations. In an antibacterial activity assay using the microbroth kinetic method, compound 1 showed moderate activity against Escherichia coli while compound 2 exhibited moderate activity against Staphylococcus aureus. Compound 1 also showed moderate activity against E. coli using the disc diffusion method. The roots extract of L. rivae was notably cytotoxic against both the DU-145 prostate cancer cell line and the Vero mammalian cell line (CC50 = 5.24 and 5.20 μg/mL, respectively). Compound 1 was also strongly cytotoxic against the DU-145 cell line (CC50 = 0.55 μg/mL) but showed no observable cytotoxicity (CC50 > 100 μg/mL) against the Vero cell line. The roots extract of L. rivae and L. schweinfurthii, epicatechin gallate as well as compound 1 exhibited inhibition of carageenan-induced inflammation.}, language = {en} } @article{WanjohiYenesewMidiwoetal.2005, author = {Wanjohi, John M. and Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G. and Dreyer, M. and Reichert, M. and Bringmann, Gerhard}, title = {Three dimeric anthracene derivatives from the fruits of Bulbine abyssinica}, issn = {0040-4020}, year = {2005}, abstract = {From the fruits of Bulbine abyssinica three new dimeric anthracene derivatives, (P)-8,9,1',8'- tetrahydroxy-3,3'-dimethyl[10,7'-bianthracene]-1,4,9',10'- tetraone (trivial name abyquinone A), (10R)-1,4,8,1',8-pentahydroxy-3,3'-dimethyl-[10,7'-bianthracene]9,9',10' (10H)-trione (trivial name abyquinone B), and (10R)-3,4'-dihydro-1,4,8,3',8',9'-hexahydroxy-3,3'- dimethyl-[10,7'-biant hracene]9,1'(10H,2'H)-dione (trivial name abyquinone Q were isolated. Despite their structural differences, these three compounds are connected to each other by the apparently biomimetic conversion of abyquinone C (a preanthraquinonylanthrone with two stereogenic centers) into B (an anthraquinonylanthrone with one stereogenic center) and finally into A (an axially chiral bianthraquinone) under mild conditions, involving a highly efficient center-to-axis chirality transfer. In addition, the known anthraquinones islandicin and chrysophanol were identified. The structures were determined on the basis of spectroscopical evidences, chemical transformations, and quantum chemical CD calculations. (C) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @misc{PeterYenesewTwinomuhwezietal.2009, author = {Peter, Martin G. and Yenesew, Abiy and Twinomuhwezi, Hannington and Kabaru, Jacques M. and Akala, Hoseah M. and Kiremire, Bernard T. and Heydenreich, Matthias and Eyase, Fredrick and Waters, Norman C. and Walsh, Douglas S.}, title = {Antiplasmodial and larvicidal flavonoids from Derris trifoliata}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44614}, year = {2009}, abstract = {From the dichloromethane-methanol (1:1) extract of the seed pods of Derris trifoliata, a new flavanone derivative (S)-lupinifolin 4´-methyl ether was isolated. In addition, the known flavonoids lupinifolin and rotenone were identified. The structures were determined on the basis of spectroscopic evidence. Lupinfolin showed moderate in vitro antiplasmodial activity against the D6 (chloroquine-sensitive) and W2 (chloroquineresistant) strains of Plasmodium falciparum. The different parts of this plant showed larvicidal activities against Aedes aegypti and rotenoids were identified as the active principles.}, language = {en} } @misc{PeterMuivaYenesewetal.2009, author = {Peter, Martin G. and Muiva, Lois M. and Yenesew, Abiy and Derese, Solomon and Heydenreich, Matthias and Akala, Hoseah M. and Eyase, Fredrick and Waters, Norman C. and Mutai, Charles and Keriko, Joseph M. and Walsh, Douglas S.}, title = {Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44437}, year = {2009}, abstract = {From the seedpods of Tephrosia elata, a new β-hydroxydihydrochalcone named (S)-elatadihydrochalcone was isolated. In addition, the known flavonoids obovatachalcone, obovatin, obovatin methyl ether and deguelin were identified. The structures were determined on the basis of spectroscopic evidence. The crude extract and the flavonoids obtained from the seedpods of this plant showed antiplasmodial activities. The literature NMR data on β-hydroxydihydrochalcones is reviewed and the identity of some of the compounds assigned β-hydroxydihydrochalcone skeleton is questioned.}, language = {en} } @article{OmosaAmuguneNdundaetal.2014, author = {Omosa, Leonidah K. and Amugune, Beatrice and Ndunda, Beth and Milugo, Trizah K. and Heydenreich, Matthias and Yenesew, Abiy and Midiwo, Jacob O.}, title = {Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia}, series = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, volume = {91}, journal = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0254-6299}, doi = {10.1016/j.sajb.2013.11.012}, pages = {58 -- 62}, year = {2014}, language = {en} } @article{MuthauraKerikoMutaietal.2017, author = {Muthaura, Charles N. and Keriko, Joseph M. and Mutai, Charles and Yenesew, Abiy and Heydenreich, Matthias and Atilaw, Yoseph and Gathirwa, Jeremiah W. and Irungu, Beatrice N. and Derese, Solomon}, title = {Antiplasmodial, cytotoxicity and phytochemical constituents of four maytenus species used in traditional medicine in Kenya}, series = {The natural products journal}, volume = {7}, journal = {The natural products journal}, number = {2}, publisher = {Bentham Science Publ.}, address = {Sharjah}, issn = {2210-3155}, doi = {10.2174/2210315507666161206144050}, pages = {144 -- 152}, year = {2017}, abstract = {Background: In Kenya, several species of the genus Maytenus are used in traditional medicine to treat many diseases including malaria. In this study, phytochemical constituents and extracts of Maytenus undata, M. putterlickioides, M. senegalensis and M. heterophylla were evaluated to determine compound/s responsible for antimalarial activity. Objective: To isolate antiplasmodial compounds from these plant species which could be used as marker compounds in the standardization of their extracts as a phytomedicine for malaria. Methods: Constituents were isolated through activity-guided fractionation of the MeOH/CHCl3 (1:1) extracts and in vitro inhibition of Plasmodium falciparum. Cytotoxicity was evaluated using Vero cells and the compounds were elucidated on the basis of NMR spectroscopy. Results: Fractionation of the extracts resulted in the isolation of ten known compounds. Compound 1 showed promising antiplasmodial activity with IC50, 3.63 and 3.95 ng/ml against chloroquine sensitive (D6) and resistant (W2) P. falciparum, respectively and moderate cytotoxicity (CC50, 37.5 ng/ml) against Vero E6 cells. The other compounds showed weak antiplasmodial (IC50 > 1.93 mu g/ml) and cytotoxic (CC50 > 39.52 mu g/ml) activities against P. falciparum and Vero E6 cells, respectively. Conclusion: (20 alpha)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-tetraen-carboxylic acid-(29)-methyl-ester (pristimerin) (1) was the most active marker and lead compound that warrants further investigation as a template for the development of new antimalarial drugs. Pristimerin is reported for the first time in M. putterlickioides. 3-Hydroxyolean-12-en-28-oic acid (oleanolic acid) (5), stigmast-5-en-3-ol (beta-sitosterol) (6), 3-oxo-28-friedelanoic acid (7), olean-12-en-3-ol (beta-amyrin) (8), lup-20(29)-en-3-ol (lupeol) (9) and lup-20(29)-en-3-one (lupenone) (10) are reported for the first time in M. undata.}, language = {en} } @article{MutaiHeydenreichThoithietal.2013, author = {Mutai, Peggoty and Heydenreich, Matthias and Thoithi, Grace and Mugumbate, Grace and Chibale, Kelly and Yenesew, Abiy}, title = {3-Hydroxyisoflavanones from the stem bark of dalbergia melanoxylon - isolation, antimycobacterial evaluation and molecular docking studies}, series = {Phytochemistry letters}, volume = {6}, journal = {Phytochemistry letters}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2013.08.018}, pages = {671 -- 675}, year = {2013}, abstract = {Two new 3-hydroxyisoflavanones, (S)-3,4',5-trihydroxy-2',7-dimethoxy-3'-prenylisoflavanone (trivial name kenusanone F 7-methyl ether) and (S)-3,5-dihydroxy-2',7-dimethoxy-2 '',2 ''-dimethylpyrano[5 '',6 '':3',4']isoflavanone (trivial name sophoronol-7-methyl ether) along with two known compounds (dalbergin and formononetin) were isolated from the stem bark of Dalbergia melanoxylon. The structures were elucidated using spectroscopic techniques. Kenusanone F 7-methyl ether showed activity against Mycobacterium tuberculosis, whereas both of the new compounds were inactive against the malaria parasite Plasmodium falciparum at 10 mu g/ml. Docking studies showed that the new compounds kenusanone F 7-methyl ether and sophoronol-7-methyl ether have high affinity for the M. tuberculosis drug target INHA.}, language = {en} } @article{MuivaMutisyaMachariaHeydenreichetal.2014, author = {Muiva-Mutisya, Lois and Macharia, Bernard and Heydenreich, Matthias and Koch, Andreas and Akala, Hoseah M. and Derese, Solomon and Omosa, Leonidah K. and Yusuf, Amir O. and Kamau, Edwin and Yenesew, Abiy}, title = {6 alpha-Hydroxy-alpha-toxicarol and (+)-tephrodin with antiplasmodial activities from Tephrosia species}, series = {Phytochemistry letters}, volume = {10}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.09.002}, pages = {179 -- 183}, year = {2014}, abstract = {The CH2Cl2/MeOH (1: 1) extract of the roots of Tephrosia villosa showed good antiplasmodial activity against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 3.1 +/- 0.4 and 1.3 +/- 0.3 mu g/mL, respectively. Chromatographic separation of the extract yielded a new rotenoid, 6 alpha-hydroxy-alpha-toxicarol, along with five known rotenoids, (rotenone, deguelin, sumatrol, 12 alpha-hydroxy-alpha-toxicarol and villosinol). Similar treatment of the extract of the stem of Tephrosia purpurea (IC50 = 4.1 +/- 0.4 and 1.9 +/- 0.2 mu g/mL against D6 and W2 strains of P. falciparum, respectively) yielded a new flavone having a unique substituent at C-7/C-8 [trivial name (+)-tephrodin], along with the known flavonoids tachrosin, obovatin methyl ether and derrone. The relative configuration and the most stable conformation in (+)-tephrodin was determined by NMR and theoretical energy calculations. The rotenoids and flavones tested showed good to moderate antiplasmodial activities (IC50 = 9 +/- 23 mu M). Whereas the cytotoxicity of rotenoids is known, the flavones (+)-tephrodin and tachrosin did not show significant cytotoxicity (IC50 > 100 mu M;) against mammalian African monkey kidney (vero) and human larynx carcinoma (HEp2) cell lines. (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{MuivaMutisyaAtilawHeydenreichetal.2018, author = {Muiva-Mutisya, Lois M. and Atilaw, Yoseph and Heydenreich, Matthias and Koch, Andreas and Akala, Hoseah M. and Cheruiyot, Agnes C. and Brown, Matthew L. and Irungu, Beatrice and Okalebo, Faith A. and Derese, Solomon and Mutai, Charles and Yenesew, Abiy}, title = {Antiplasmodial prenylated flavanonols from Tephrosia subtriflora}, series = {Natural Product Research}, volume = {32}, journal = {Natural Product Research}, number = {12}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1478-6419}, doi = {10.1080/14786419.2017.1353510}, pages = {1407 -- 1414}, year = {2018}, abstract = {The CH2Cl2/MeOH (1:1) extract of the aerial parts of Tephrosia subtriflora afforded a new flavanonol, named subtriflavanonol (1), along with the known flavanone spinoflavanone B, and the known flavanonols MS-II (2) and mundulinol. The structures were elucidated by the use of NMR spectroscopy and mass spectrometry. The absolute configuration of the flavanonols was determined based on quantum chemical ECD calculations. In the antiplasmodial assay, compound 2 showed the highest activity against chloroquine-sensitive Plasmodiumfalciparum reference clones (D6 and 3D7), artemisinin-sensitive isolate (F32-TEM) as well as field isolate (KSM 009) with IC50 values 1.4-4.6M without significant cytotoxicity against Vero and HEp2 cell lines (IC50>100M). The new compound (1) showed weak antiplasmodial activity, IC50 12.5-24.2M, but also showed selective anticancer activity against HEp2 cell line (CC50 16.9M). [GRAPHICS] .}, language = {en} } @article{MarcoDeyouGruhonjicetal.2017, author = {Marco, Makungu and Deyou, Tsegaye and Gruhonjic, Amra and Holleran, John and Duffy, Sandra and Heydenreich, Matthias and Firtzpatrick, Paul A. and Landberg, Goran and Koch, Andreas and Derese, Solomon and Pelletier, Jerry and Avery, Vicky M. and Erdelyi, Mate and Yenesew, Abiy}, title = {Pterocarpans and isoflavones from the root bark of Millettia micans and of Millettia dura}, series = {Phytochemistry letters}, volume = {21}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2017.07.012}, pages = {216 -- 220}, year = {2017}, language = {en} }