@article{KrummenauerPrahlCostaetal.2019, author = {Krummenauer, Linda and Prahl, Boris F. and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Holsten, Anne and Walther, Carsten and Kropp, J{\"u}rgen}, title = {Global drivers of minimum mortality temperatures in cities}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {695}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.07.366}, pages = {8}, year = {2019}, abstract = {Human mortality shows a pronounced temperature dependence. The minimum mortality temperature (MMT) as a characteristic point of the temperature-mortality relationship is influenced by many factors. As MMT estimates are based on case studies, they are sporadic, limited to data-rich regions, and their drivers have not yet been clearly identified across case studies. This impedes the elaboration of spatially comprehensive impact studies on heat-related mortality and hampers the temporal transfer required to assess climate change impacts. Using 400 MMTs from cities, we systematically establish a generalised model that is able to estimate MMTs (in daily apparent temperature) for cities, based on a set of climatic, topographic and socio-economic drivers. A sigmoid model prevailed against alternative model setups due to having the lowest Akaike Information Criterion (AICc) and the smallest RMSE. We find the long-term climate, the elevation, and the socio-economy to be relevant drivers of our MMT sample within the non-linear parametric regression model. A first model application estimated MMTs for 599 European cities ( >100 000 inhabitants) and reveals a pronounced decrease in MMTs (27.8-16 degrees C) from southern to northern cities. Disruptions of this pattern across regions of similar mean temperatures can be explained by socio-economic standards as noted for central eastern Europe. Our alternative method allows to approximate MMTs independently from the availability of daily mortality records. For the first time, a quantification of climatic and non-climatic MMT drivers has been achieved, which allows to consider changes in socio-economic conditions and climate. This work contributes to the comparability among MMTs beyond location-specific and regional limits and, hence, towards a spatially comprehensive impact assessment for heat-related mortality.}, language = {en} } @article{KrummenauerCostaPrahletal.2021, author = {Krummenauer, Linda and Costa, Lu{\´i}s F{\´i}l{\´i}pe Carvalho da and Prahl, Boris F. and Kropp, J{\"u}rgen}, title = {Future heat adaptation and exposure among urban populations and why a prospering economy alone won't save us}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-99757-0}, pages = {14}, year = {2021}, abstract = {When inferring on the magnitude of future heat-related mortality due to climate change, human adaptation to heat should be accounted for. We model long-term changes in minimum mortality temperatures (MMT), a well-established metric denoting the lowest risk of heat-related mortality, as a function of climate change and socio-economic progress across 3820 cities. Depending on the combination of climate trajectories and socio-economic pathways evaluated, by 2100 the risk to human health is expected to decline in 60\% to 80\% of the cities against contemporary conditions. This is caused by an average global increase in MMTs driven by long-term human acclimatisation to future climatic conditions and economic development of countries. While our adaptation model suggests that negative effects on health from global warming can broadly be kept in check, the trade-offs are highly contingent to the scenario path and location-specific. For high-forcing climate scenarios (e.g. RCP8.5) the maintenance of uninterrupted high economic growth by 2100 is a hard requirement to increase MMTs and level-off the negative health effects from additional scenario-driven heat exposure. Choosing a 2 degrees C-compatible climate trajectory alleviates the dependence on fast growth, leaving room for a sustainable economy, and leads to higher reductions of mortality risk.}, language = {en} } @phdthesis{Krummenauer2022, author = {Krummenauer, Linda}, title = {Global heat adaptation among urban populations and its evolution under different climate futures}, doi = {10.25932/publishup-55929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559294}, school = {Universit{\"a}t Potsdam}, pages = {xix, 161}, year = {2022}, abstract = {Heat and increasing ambient temperatures under climate change represent a serious threat to human health in cities. Heat exposure has been studied extensively at a global scale. Studies comparing a defined temperature threshold with the future daytime temperature during a certain period of time, had concluded an increase in threat to human health. Such findings however do not explicitly account for possible changes in future human heat adaptation and might even overestimate heat exposure. Thus, heat adaptation and its development is still unclear. Human heat adaptation refers to the local temperature to which populations are adjusted to. It can be inferred from the lowest point of the U- or V-shaped heat-mortality relationship (HMR), the Minimum Mortality Temperature (MMT). While epidemiological studies inform on the MMT at the city scale for case studies, a general model applicable at the global scale to infer on temporal change in MMTs had not yet been realised. The conventional approach depends on data availability, their robustness, and on the access to daily mortality records at the city scale. Thorough analysis however must account for future changes in the MMT as heat adaptation happens partially passively. Human heat adaptation consists of two aspects: (1) the intensity of the heat hazard that is still tolerated by human populations, meaning the heat burden they can bear and (2) the wealth-induced technological, social and behavioural measures that can be employed to avoid heat exposure. The objective of this thesis is to investigate and quantify human heat adaptation among urban populations at a global scale under the current climate and to project future adaptation under climate change until the end of the century. To date, this has not yet been accomplished. The evaluation of global heat adaptation among urban populations and its evolution under climate change comprises three levels of analysis. First, using the example of Germany, the MMT is calculated at the city level by applying the conventional method. Second, this thesis compiles a data pool of 400 urban MMTs to develop and train a new model capable of estimating MMTs on the basis of physical and socio-economic city characteristics using multivariate non-linear multivariate regression. The MMT is successfully described as a function of the current climate, the topography and the socio-economic standard, independently of daily mortality data for cities around the world. The city-specific MMT estimates represents a measure of human heat adaptation among the urban population. In a final third analysis, the model to derive human heat adaptation was adjusted to be driven by projected climate and socio-economic variables for the future. This allowed for estimation of the MMT and its change for 3 820 cities worldwide for different combinations of climate trajectories and socio-economic pathways until 2100. The knowledge on the evolution of heat adaptation in the future is a novelty as mostly heat exposure and its future development had been researched. In this work, changes in heat adaptation and exposure were analysed jointly. A wide range of possible health-related outcomes up to 2100 was the result, of which two scenarios with the highest socio-economic developments but opposing strong warming levels were highlighted for comparison. Strong economic growth based upon fossil fuel exploitation is associated with a high gain in heat adaptation, but may not be able to compensate for the associated negative health effects due to increased heat exposure in 30\% to 40\% of the cities investigated caused by severe climate change. A slightly less strong, but sustainable growth brings moderate gains in heat adaptation but a lower heat exposure and exposure reductions in 80\% to 84\% of the cities in terms of frequency (number of days exceeding the MMT) and intensity (magnitude of the MMT exceedance) due to a milder global warming. Choosing a 2 ° C compatible development by 2100 would therefore lower the risk of heat-related mortality at the end of the century. In summary, this thesis makes diverse and multidisciplinary contributions to a deeper understanding of human adaptation to heat under the current and the future climate. It is one of the first studies to carry out a systematic and statistical analysis of urban characteristics which are useful as MMT drivers to establish a generalised model of human heat adaptation, applicable at the global level. A broad range of possible heat-related health options for various future scenarios was shown for the first time. This work is of relevance for the assessment of heat-health impacts in regions where mortality data are not accessible or missing. The results are useful for health care planning at the meso- and macro-level and to urban- and climate change adaptation planning. Lastly, beyond having met the posed objective, this thesis advances research towards a global future impact assessment of heat on human health by providing an alternative method of MMT estimation, that is spatially and temporally flexible in its application.}, language = {en} } @article{HuberKrummenauerPenaOrtizetal.2020, author = {Huber, Veronika and Krummenauer, Linda and Pe{\~n}a-Ortiz, Cristina and Lange, Stefan and Gasparrini, Antonio and Vicedo-Cabrera, Ana Maria and Garcia-Herrera, Ricardo and Frieler, Katja}, title = {Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming}, series = {Environmental Research}, volume = {186}, journal = {Environmental Research}, publisher = {Elsevier}, address = {San Diego, California}, issn = {0013-9351}, doi = {10.1016/j.envres.2020.109447}, pages = {1 -- 10}, year = {2020}, abstract = {Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49\% (95\%CI: 3.82-7.19) and 0.81\% (95\%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45\% (95\%CI: -0.02-1.06) at 3 degrees C, 1.53\% (95\%CI: 0.96-2.06) at 4 degrees C, and 2.88\% (95\%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.}, language = {en} } @misc{HuberKrummenauerPenaOrtizetal.2020, author = {Huber, Veronika and Krummenauer, Linda and Pe{\~n}a-Ortiz, Cristina and Lange, Stefan and Gasparrini, Antonio and Vicedo-Cabrera, Ana Maria and Garcia-Herrera, Ricardo and Frieler, Katja}, title = {Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51651}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516511}, pages = {12}, year = {2020}, abstract = {Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49\% (95\%CI: 3.82-7.19) and 0.81\% (95\%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45\% (95\%CI: -0.02-1.06) at 3 degrees C, 1.53\% (95\%CI: 0.96-2.06) at 4 degrees C, and 2.88\% (95\%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.}, language = {en} }