@article{MengesHoviusAndermannetal.2020, author = {Menges, Johanna and Hovius, Niels and Andermann, Christoff and Lupker, Maarten and Haghipour, Negar and M{\"a}rki, Lena and Sachse, Dirk}, title = {Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {286}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {New York [u.a.]}, issn = {0016-7037}, doi = {10.1016/j.gca.2020.07.003}, pages = {159 -- 176}, year = {2020}, abstract = {Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates.}, language = {en} } @article{HemingwayHiltonHoviusetal.2018, author = {Hemingway, Jordon Dennis and Hilton, Robert G. and Hovius, Niels and Eglinton, Timothy I. and Haghipour, Negar and Wacker, Lukas and Chen, Meng-Chiang and Galy, Valier V.}, title = {Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils}, series = {Science}, volume = {360}, journal = {Science}, number = {6385}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aao6463}, pages = {209 -- +}, year = {2018}, abstract = {Lithospheric organic carbon ("petrogenic"; OCpetro) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO2) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 +/- 11\% of the OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO2 emission fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by silicate weathering and biospheric OC burial.}, language = {en} } @article{HaghipourBurgKoberetal.2012, author = {Haghipour, Negar and Burg, Jean-Pierre and Kober, Florian and Zeilinger, Gerold and Ivy-Ochs, Susan and Kubik, Peter W. and Faridi, Mohammad}, title = {Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge - the folded fluvial terraces in Makran (SE, Iran)}, series = {Earth \& planetary science letters}, volume = {355}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.09.001}, pages = {187 -- 198}, year = {2012}, abstract = {We surveyed fluvial terraces to decipher the Quaternary increment of crustal shortening and shortening rate in the on-shore Makran Accretionary Wedge. We focused on three major catchment basins and associated fold systems. Terrace profiles reconstructed from differential GPS measurements combined with DEM revealed two regional dominant wavelengths, about 5 km in the northern part of the study area and about 15 km to the south. These two wavelengths suggest the existence of two active decollement layers at two rooting depths. The average shortening rate due to folding is estimated at 0.8-1.2 mm/a over the last 130 ka. This accounts for 10-15\% of the shortening rate (similar to 8 mm/a) given by kinematic GPS measurements between Chabahar and Bazman and 3\% of the convergence between Arabia and Eurasia, across the Makran subduction zone. Despite active deformation and a relatively high shortening rate, the geophysical record shows nearly absent seismic activity in Makran. We propose that strain accumulated in folds over intermediate decollement levels within a thick, incompletely lithified sedimentary cover explains the essentially aseismic, recent tectonics in this region. The importance of folds points to imperfect Coulomb behaviour of the wedge. (C) 2012 Elsevier B.V. All rights reserved.}, language = {en} }