@article{LoebbickeChananaSchlaadetal.2011, author = {L{\"o}bbicke, Ruben and Chanana, Munish and Schlaad, Helmut and Pilz-Allen, Christine and G{\"u}nter, Christina and M{\"o}hwald, Helmuth and Taubert, Andreas}, title = {Polymer Brush Controlled Bioinspired Calcium Phosphate Mineralization and Bone Cell Growth}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {12}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm200991b}, pages = {3753 -- 3760}, year = {2011}, abstract = {Polymer brushes on thiol-modified gold surfaces were synthesized by using terminal thiol groups for the surface initiated free radical polymerization of methacrylic acid and dimethylaminotheyl methacrylate, respectively. Atomic force microscopy shows that the resulting poly(methacrylic acid (PMAA) and poly(dimethylaminothyl methacrylate) (PDM- AEMA) brushes are homogeneous. Contact angle measurements show that the brushes are pH responsive and can reversibly be protonated and deprotonated. Mineralization of the brushes with calcium phosphate at different pH yields homogeneously mineralized surfaces, and preosteoblastic cells proliferate-on be number of living cells on the mineralized hybrid surface is ca. 3 times (P corresponding nonmineralized brushes.}, language = {en} } @article{GoldhahnSchubertSchlaadetal.2018, author = {Goldhahn, Christian and Schubert, Jonas and Schlaad, Helmut and Ferri, James K. and Fery, Andreas and Chanana, Munish}, title = {Synthesis of Metal@Protein@Polymer Nanoparticles with Distinct Interfacial and Phase Transfer Behavior}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02314}, pages = {6717 -- 6727}, year = {2018}, abstract = {In this study, we present a novel and facile method for the synthesis of multiresponsive plasmonic nanoparticles with an interesting interfacial behavior. We used thiol-initiated photopolymerization technique to graft poly(N-isopropylacrylamide) onto the surface of protein-coated gold nanoparticles. The combination of the protein bovine serum albumin with the thermoresponsive polymer leads to smart hybrid nanoparticles, which show a stimuli-responsive behavior of their aggregation and a precisely controllable phase transfer behavior. Three interconnected stimuli, namely, temperature, ionic strength, and pH, were identified as property tuning switches. The aggregation was completely reversible and was quantified by determining Smoluchowski's instability ratios with time-resolved dynamic light scattering. The tunable hydrophobicity via the three stimuli was used to study interfacial activity and phase transfer behavior of the nanoparticles at an octanol/water interface. Depending on the type of coating (i.e., protein or protein/polymer) as well as the three external stimuli, the nanoparticles either remained in the aqueous phase (aggregated or nonaggregated), accumulated at the oil/water interface, wet the glass wall between the glass vial and the octanol phase, or even crossed the oil/water interface. Such smart and interfacially active nanoparticles with external triggers that are capable of crossing oil/water interfaces under physiological conditions open up new avenues for a variety of applications ranging from the development of drug-delivery nanosystems across biological barriers to the preparation of new catalytic materials.}, language = {en} } @phdthesis{Chanana2010, author = {Chanana, Munish}, title = {Synthesis of stimuli-responsive and switchable inorganic nanoparticles for biomedical applications}, address = {Potsdam}, pages = {128, E-1 S. : Ill., graph. Darst.}, year = {2010}, language = {en} }