@article{ZiolkowskiBleekTwamleyetal.2012, author = {Ziolkowski, Bartosz and Bleek, Katrin and Twamley, Brendan and Fraser, Kevin J. and Byrne, Robert and Diamond, Dermot and Taubert, Andreas}, title = {Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201200597}, pages = {5245 -- 5251}, year = {2012}, abstract = {Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator.}, language = {en} } @article{MaiRakhmatullinaBleeketal.2014, author = {Mai, Tobias and Rakhmatullina, Ekaterina and Bleek, Katrin and Boye, Susanne and Yuan, Jiayin and Voelkel, Antje and Graewert, Marlies and Cheaib, Zeinab and Eick, Sigrun and G{\"u}nter, Christina and Lederer, Albena and Lussi, Adrian and Taubert, Andreas}, title = {Poly(ethylene oxide)-b-poly(3-sulfopropyl methacrylate) block copolymers for calcium phosphate mineralization and biofilm inhibition}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {15}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm500888q}, pages = {3901 -- 3914}, year = {2014}, abstract = {Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2012.12.027}, pages = {6283 -- 6321}, year = {2013}, abstract = {The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2013.05.007}, pages = {8466 -- 8466}, year = {2013}, language = {en} } @phdthesis{Bleek2017, author = {Bleek, Katrin}, title = {Phosphonathaltige (Co)Polymere und ihr Einfluss auf die Mineralisation von Calciumphosphat}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406630}, school = {Universit{\"a}t Potsdam}, pages = {VI, 167}, year = {2017}, abstract = {In der vorliegenden Arbeit wurden verschiedene Polymere hergestellt, die bestimmte funktionelle Gruppen beinhalten. Diese Gruppen werden zum Teil durch Alkylketten gesch{\"u}tzt, zum Teil liegen sie ungesch{\"u}tzt im Polymer vor. Mit diesen Polymeren wurden Untersuchungen mit knochen{\"a}hnlichen Materialien sogenanntem Calciumphosphat durchgef{\"u}hrt. Es wurde der Einfluss der verschiedenen Polymere auf die Bildung dieser knochen{\"a}hnlichen Substanzen untersucht und auch der Einfluss auf die Stabilit{\"a}t und das Aufl{\"o}sungsverhalten der Calciumphosphate. Dabei sollte ein besonderes Augenmerk auf die funktionellen Gruppen, sogenannte Phosphons{\"a}uren und deren Ester, die die Phosphons{\"a}uren sch{\"u}tzen, gesetzt werden. Es stellte sich heraus, dass bei der Bildung der knochen{\"a}hnlichen Materialien die Polymere mit Estergruppen eine leichte F{\"o}rderung der Calciumphosphat-Bildung verursachen, w{\"a}hrend die ungesch{\"u}tzten Polymere die Bildung des „Knochenmaterials" sehr stark verz{\"o}gern. Dieser Effekt verst{\"a}rkt sich noch, wenn eine weitere bestimmte Komponente zum Polymer hinzukommt und somit ein Copolymer gebildet wird. Diese Copolymere beschleunigen bzw. verlangsamen die Calciumphosphatbildung noch st{\"a}rker. Werden Polymere mit einem anderen Polymerger{\"u}st aber den gleichen Phosphons{\"a}uresetern in den Seitenketten verwendet, {\"a}ndert sich der Einfluss der Calciumphosphat-Bildung wenig. Verglichen mit Polymeren ohne solche Phosphons{\"a}uregruppen wird erkennbar, dass es weniger die Phosphons{\"a}uregruppe ist, die die Mineralisation beeinflusst, sondern es eher eine Folge der S{\"a}ure im Polymer ist. Wird die Stabilisierung und Aufl{\"o}sung der Knochen{\"a}hnlichen Substanzen betrachtet, f{\"a}llt auf, dass auch hier wieder die S{\"a}uren den gr{\"o}ßten Effekt aus{\"u}ben. Die Phosphons{\"a}uregruppen scheinen dabei jedoch tats{\"a}chlich einen besonderen Effekt auszu{\"u}ben, da bei diesen die Stabilisierung und auch das Aufl{\"o}sungsverm{\"o}gen von Calciumphospaht von allen untersuchten Polymeren am gr{\"o}ßten sind. In der Arbeit konnte außerdem gezeigt werden, dass die Polymere und Copolymere mit Phosphons{\"a}uregruppen einen leicht positiven Effekt auf die Zahngesundheit zeigen. Die Zahl von Bakterien auf der Zahnoberfl{\"a}che konnte reduziert werden und bei der Untersuchung der Zahnaufl{\"o}sung wurde eine glattere Zahnoberfl{\"a}che erhalten, jedoch wurde auch mit den untersuchten Polymeren der Zahn im Inneren angegriffen. Weitere Untersuchungen k{\"o}nnen hier noch genaueren Aufschluss geben. Außerdem sollten auch die Polymere mit dem unterschiedlichen Polymerger{\"u}st und Phosphons{\"a}ureestergruppen untersucht werden. Letztere Polymere wurden verwendet, um festere "gelartige" Polymernetzwerke herzustellen und deren Einfluss auf die Calciumphosphatmineralisation zu untersuchen. Es stellte sich heraus, dass ohne das Einbetten einiger Calciumphosphatteilchen keine Bildung von Calciumphospaht an den Materialien ausgel{\"o}st wurde, wurden die sogenannten Hydrogele jedoch mit Calciumphosphatpartikeln geimpft, konnte deutliches weiteres Calciumphosphatwachstum beobachtet werden. Das Material l{\"a}sst sich auch in verschiedene Formen bringen. Somit k{\"o}nnte das System nach weiteren Untersuchungen zur Vertr{\"a}glichkeit mit Zellen oder Geweben ein m{\"o}gliches Material f{\"u}r Implantate darstellen, mit denen gezielt Knochenwachstum eingeleitet werden k{\"o}nnte.}, language = {de} }