@article{ShakiFischer2020, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Systematic spatial distortion of quantitative estimates}, series = {Psychological research}, volume = {85}, journal = {Psychological research}, number = {6}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-020-01390-5}, pages = {2177 -- 2185}, year = {2020}, abstract = {Magnitude estimation has been studied since the beginnings of scientific psychology and constitutes a fundamental aspect of human behavior. Yet, it has apparently never been noticed that estimates depend on the spatial arrangement used. We tested 167 adults in three experiments to show that the spatial layout of stimuli and responses systematically distorts number estimation, length production, and weight reproduction performance. The direction of distortion depends on the observer's counting habits, but does not seem to reflect the use of spatially associated number concepts. Our results imply that all quantitative estimates are contaminated by a "spell of space" whenever stimuli or responses are spatially distributed.}, language = {en} } @article{ShakiFischer2020, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Nothing to dance about: unclear evidence for symbolic representations and numerical competence in honeybees}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {287}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1925}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2019.2840}, pages = {2}, year = {2020}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {A biological foundation for spatial-numerical associations}, series = {Annals of the New York Academy of Sciences}, volume = {1477}, journal = {Annals of the New York Academy of Sciences}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0077-8923}, doi = {10.1111/nyas.14418}, pages = {44 -- 53}, year = {2020}, abstract = {"Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {Commentary}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.00099}, pages = {4}, year = {2020}, language = {en} } @article{FelisattiAagtenMurphyLaubrocketal.2020, author = {Felisatti, Arianna and Aagten-Murphy, David and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {The brain's asymmetric frequency tuning}, series = {Symmetry / Molecular Diversity Preservation International (MDPI)}, volume = {12}, journal = {Symmetry / Molecular Diversity Preservation International (MDPI)}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-8994}, doi = {10.3390/sym12122083}, pages = {25}, year = {2020}, abstract = {To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss the neuropsychological and educational implications of these emergent asymmetries and suggest future research approaches.}, language = {en} }