@article{AichnerHerzschuhWilkesetal.2012, author = {Aichner, Bernhard and Herzschuh, Ulrike and Wilkes, Heinz and Schulz, Hans-Martin and Wang, Yongbo and Plessen, Birgit and Mischke, Steffen and Diekmann, Bernhard and Zhang, Chengjun}, title = {Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {313}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2011.10.015}, pages = {140 -- 149}, year = {2012}, abstract = {Organic geochemical proxy data from surface sediment samples and a sediment core from Lake Donggi Cona were used to infer environmental changes on the northeastern Tibetan Plateau spanning the last 18.4 kyr. Long-chain n-alkanes dominate the aliphatic hydrocarbon fraction of the sediment extract from most surface sediment samples and the sediment core. Unsaturated mid-chain n-alkanes (nC(23:1) and nC(25:1)) have high abundances in some samples, especially in core samples from the late glacial and early Holocene. TOC contents, organic biomarker and non-pollen-palynomorph concentrations and results from organic petrologic analysis on selected samples suggest three major episodes in the history of Lake Donggi Cona. Before ca. 12.6 cal ka BP samples contain low amounts of organic matter due to cold and arid conditions during the late glacial. After 12.6 cal ka BP, relatively high contents of TOC and concentrations of Botryococcus fossils, as well as enhanced concentrations of mid-chain n-alkanes and n-alkenes suggest a higher primary and macrophyte productivity than at present This is supported by high contents of palynomorphs derived from higher plants and algae and was possibly triggered by a decrease of salinity and amelioration of climate during the early Holocene. Since 6.8 cal ka BP Lake Donggi Cona has been an oligotrophic freshwater lake. Proxy data suggest that variations in insolation drive ecological changes in the lake, with increased aquatic productivity during the early Holocene summer insolation maximum. Short-term drops of TOC contents or biomarker concentrations (at 9.9 cal ka BP, after 8.0 and between 3.5 and 1.7 cal ka BP) can possibly be related to relatively cool and dry episodes reported from other sites on the north-eastern Tibetan Plateau, which are hypothesized to occur in phase with Northern Hemisphere cooling events.}, language = {en} } @article{AnoopPrasadPlessenetal.2013, author = {Anoop, Ambili and Prasad, S. and Plessen, Birgit and Basavaiah, Nathani and Gaye, B. and Naumann, R. and Menzel, P. and Weise, S. and Brauer, Achim}, title = {Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India}, series = {Journal of quaternary science}, volume = {28}, journal = {Journal of quaternary science}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0267-8179}, doi = {10.1002/jqs.2625}, pages = {349 -- 359}, year = {2013}, abstract = {We have undertaken petrographic, mineralogical, geochemical and isotopic investigations on carbonate minerals found within a 10-m-long core from Lonar Lake, central India, with the aim of evaluating their potential as palaeoenvironmental proxies. The core encompasses the entire Holocene and is the first well-dated high-resolution record from central India. While calcite and/or aragonite were found throughout the core, the mineral gaylussite was found only in two specific intervals (46303890 and 2040560 cal a BP). Hydrochemical and isotope data from inflowing streams and lake waters indicate that evaporitic processes play a dominant role in the precipitation of carbonates within this lake. Isotopic (18O and 13C) studies on the evaporative gaylussite crystals and residual bulk carbonates (calcite) from the long core show that evaporation is the major control on 18O enrichment in both the minerals. However, in case of 13C additional mechanisms, for example methanogenesis (gaylussite) and phytoplankton productivity (calcium carbonate), play an additional important role in some intervals. We also discuss the relevance of our investigation for palaeoclimate reconstruction and late Holocene monsoon variability.}, language = {en} } @article{BrunelleSigmanJaccardetal.2010, author = {Brunelle, Brigitte G. and Sigman, Daniel M. and Jaccard, Samuel Laurent and Keigwin, Lloyd D. and Plessen, Birgit and Schettler, Georg and Cook, Mea S. and Haug, Gerald H.}, title = {Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2010.03.010}, year = {2010}, abstract = {In piston cores from the open subarctic Pacific and the Okhotsk Sea, diatom-bound delta N-15 (delta N-15(db)), biogenic opal, calcium carbonate, and barium were measured from coretop to the previous glacial maximum (MIS 6). Glacial intervals are generally characterized by high delta N-15(db) (similar to 8 parts per thousand) and low productivity, whereas interglacial intervals have a lower delta N-15(db) (5.7-6.3 parts per thousand) and indicate high biogenic productivity. These data extend the regional swath of evidence for nearly complete surface nutrient utilization during glacial maxima, consistent with stronger upper water column stratification throughout the subarctic region during colder intervals. An early deglacial decline in delta N-15(db) of 2 parts per thousand at similar to 17.5 ka, previously observed in the Bering Sea, is found here in the open subarctic Pacific record and arguably also in the Okhotsk, and a case can be made that a similar decrease in delta N-15(db) occurred in both regions at the previous deglaciation as well. The early deglacial delta N-15(db) decrease, best explained by a decrease in surface nutrient utilization, appears synchronous with southern hemisphere-associated deglacial changes and with the Heinrich 1 event in the North Atlantic. This delta N-15(db) decrease may signal the initial deglacial weakening in subarctic North Pacific stratification and/or a deglacial increase in shallow subsurface nitrate concentration. If the former, it would be the North Pacific analogue to the increase in vertical exchange inferred for the Southern Ocean at the time of Heinrich Event 1. In either case, the lack of any clear change in paleoproductivity proxies during this interval would seem to require an early deglacial decrease in the iron-to-nitrate ratio of subsurface nutrient supply or the predominance of light limitation of phytoplankton growth during the deglaciation prior to Bolling-Allerod warming.}, language = {en} } @article{DraegerPlessenKieneletal.2019, author = {Dr{\"a}ger, Nadine and Plessen, Birgit and Kienel, Ulrike and Siowinski, Michat and Ramisch, Arne and Tjallingii, Rik and Pinkerneil, Sylvia and Brauer, Achim}, title = {Hypolimnetic oxygen conditions influence varve preservation and delta C-13 of sediment organic matter in Lake Tiefer See, NE Germany}, series = {Journal of paleolimnolog}, volume = {62}, journal = {Journal of paleolimnolog}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-019-00084-2}, pages = {181 -- 194}, year = {2019}, abstract = {Stable carbon isotopes of sediment organic matter (delta C-13(OM)) are widely applied in paleoenvironmental studies. Interpretations of delta C-13(OM), however, remain challenging and factors that influence delta C-13(OM) may not apply across all lakes. Common explanations for stratigraphic shifts in delta C-13(OM) include changes in lake productivity or changes in inputs of allochthonous OM. We investigated the influence of different oxygen conditions (oxic versus anoxic) on the delta C-13(OM) values in the sediments of Lake Tiefer See. We analysed (1) a long sediment core from the deepest part of the lake, (2) two short, sediment-water interface cores from shallower water depths, and (3) OM in the water column, i.e. from sediment traps. Fresh OM throughout the entire water column showed a relatively constant delta C-13(OM) value of approximately -30.5 parts per thousand. Similar values, about -31 parts per thousand, were obtained for well-varved sediments in both the long and short, sediment-water interface cores. In contrast, delta C-13(OM) values from non-varved sediments in all cores were significantly less negative (-29 parts per thousand). The delta C-13(OM) values in the sediment-water interface cores from different water depths differ for sediments of the same age, if oxygen conditions at the time of deposition were different at these sites, as suggested by the state of varve preservation. Sediments deposited from AD 1924 to 1980 at 62m water depth are varved and exhibit delta C-13(OM) values around -31 parts per thousand, whereas sediments of the same age in the core from 35m water depth are not varved and show less negative delta C-13(OM) values of about -29 parts per thousand. The relation between varve occurrence and delta C-13(OM) values suggests that delta C-13(OM) is associated with oxygen conditions because varve preservation depends on hypolimnetic anoxia. A mechanism that likely influences delta C-13(OM) is selective degradation of OM under oxic conditions, such that organic components with more negative delta C-13(OM) are preferably decomposed, leading to less negative delta C-13(OM) values in the remaining, undegraded OM pool. Greater decomposition of OM in non-varved sediments is supported by lower TOC concentrations in these deposits (similar to 5\%) compared to well-varved sediments (similar to 15\%). Even in lakes that display small variations in productivity and terrestrial OM input through time, large spatial and temporal differences in hypolimnetic oxygen concentrations may be an important factor controlling sediment delta C-13(OM).}, language = {en} } @article{FohlmeisterArpsSpoetletal.2018, author = {Fohlmeister, Jens Bernd and Arps, Jennifer and Spoetl, Christoph and Schroeder-Ritzrau, Andrea and Plessen, Birgit and G{\"u}nter, Christina and Frank, Norbert and Tr{\"u}ssel, Martin}, title = {Carbon and oxygen isotope fractionation in the water-calcite-aragonite system}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {235}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2018.05.022}, pages = {127 -- 139}, year = {2018}, abstract = {The precise determination of the stable C and O isotope fractionation between water and calcite (CC) and water and aragonite (AR) is of special interest for climate reconstructions, e.g. paleotemperatures. Previous studies reported results from both laboratory and field experiments, but their results are only partly consistent. Here we present C and O isotope data of a stalagmite from the Swiss Alps, which shows CC-AR transitions along individual growth layers. Using detailed analyses both laterally and perpendicular to such layers we examined the difference in the C and O isotope fractionation factor of the HCO3- - CC and the HCO3- - AR system. For O this difference is similar to the water-CC and water-AR offset provided in experimental studies. The O isotope fractionation difference in the water-CC and water-AR system is comparable to those determined in laboratory studies but shows a statistically significant correlation with the CaCO3 precipitation rate. For C we found a fractionation difference, which is independent of CaCO3 precipitation rate and with slightly smaller values for the fractionation offset between HCO3- - CC and HCO3- - AR compared to literature values. However, we also found an unexpected decrease in delta C-13 along growth layers, which contradicts the widely used concept of Rayleigh fractionation during CO2 degassing and CaCO3 precipitation. The results of this study can be used e.g., to correct stable isotope time series of stalagmites showing CC-AR transitions along their growth axes. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{FohlmeisterPlessenDudashvilietal.2017, author = {Fohlmeister, Jens Bernd and Plessen, Birgit and Dudashvili, Alexey Sergeevich and Tjallingii, Rik and Wolff, Christian Michael and Gafurov, Abror and Cheng, Hai}, title = {Winter precipitation changes during the Medieval Climate Anomaly and the Little Ice Age in arid Central Asia}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {178}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.026}, pages = {24 -- 36}, year = {2017}, abstract = {The strength of the North Atlantic Oscillation (NAO) is considered to be the main driver of climate changes over the European and western Asian continents throughout the last millennium. For example, the predominantly warm Medieval Climate Anomaly (MCA) and the following cold period of the Little Ice Age (LIA) over Europe have been associated with long-lasting phases with a positive and negative NAO index. Its climatic imprint is especially pronounced in European winter seasons. However, little is known about the influence of NAO with respect to its eastern extent over the Eurasian continent. Here we present speleothem records (PC, 8180 and Sr/Ca) from the southern rim of Fergana Basin (Central Asia) revealing annually resolved past climate variations during the last millennium. The age control of the stalagmite relies on radiocarbon dating as large amounts of detrital material inhibit accurate 230Th dating. Present-day calcification of the stalagmite is most effective during spring when the cave atmosphere and elevated water supply by snow melting and high amount of spring precipitation provide optimal conditions. Seasonal precipitation variations cause changes of the stable isotope and Sr/ Ca compositions. The simultaneous changes in these geochemical proxies, however, give also evidence for fractionation processes in the cave. By disentangling both processes, we demonstrate that the amount of winter precipitation during the MCA was generally higher than during the LIA, which is in line with climatic changes linked to the NAO index but opposite to the higher mountain records of Central Asia. Several events of strongly reduced winter precipitation are observed during the LIA in Central Asia. These dry winter events can be related to phases of a strong negative NAO index and all results reveal that winter precipitation over the central Eurasian continent is tightly linked to atmospheric NAO modes by the westerly wind systems. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HeineckeEppReschkeetal.2017, author = {Heinecke, Liv and Epp, Laura Saskia and Reschke, Maria and Stoof-Leichsenring, Kathleen Rosemarie and Mischke, Steffen and Plessen, Birgit and Herzschuh, Ulrike}, title = {Aquatic macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal ka revealed by sedimentary ancient DNA and geochemical analyses of macrofossil remains}, series = {Journal of paleolimnolog}, volume = {58}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-017-9986-7}, pages = {403 -- 417}, year = {2017}, language = {en} } @article{HeineckeMischkeAdleretal.2017, author = {Heinecke, Liv and Mischke, Steffen and Adler, Karsten and Barth, Anja and Biskaborn, Boris and Plessen, Birgit and Nitze, Ingmar and Kuhn, Gerhard and Rajabov, Ilhomjon and Herzschuh, Ulrike}, title = {Climatic and limnological changes at Lake Karakul (Tajikistan) during the last similar to 29 cal ka}, series = {Journal of paleolimnolog}, volume = {58}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-017-9980-0}, pages = {317 -- 334}, year = {2017}, abstract = {We present results of analyses on a sediment core from Lake Karakul, located in the eastern Pamir Mountains, Tajikistan. The core spans the last similar to 29 cal ka. We investigated and assessed processes internal and external to the lake to infer changes in past moisture availability. Among the variables used to infer lake-external processes, high values of grain-size end-member (EM) 3 (wide grain-size distribution that reflects fluvial input) and high Sr/Rb and Zr/Rb ratios (coinciding with coarse grain sizes), are indicative of moister conditions. High values in EM1, EM2 (peaks of small grain sizes that reflect long-distance dust transport or fine, glacially derived clastic input) and TiO2 (terrigenous input) are thought to reflect greater influence of dry air masses, most likely of Westerly origin. High input of dust from distant sources, beginning before the Last Glacial Maximum (LGM) and continuing to the late glacial, reflects the influence of dry Westerlies, whereas peaks in fluvial input suggest increased moisture availability. The early to early-middle Holocene is characterised by coarse mean grain sizes, indicating constant, high fluvial input and moister conditions in the region. A steady increase in terrigenous dust and a decrease in fluvial input from 6.6 cal ka BP onwards points to the Westerlies as the predominant atmospheric circulation through to present, and marks a return to drier and even arid conditions in the area. Proxies for productivity (TOC, TOC/TN, TOCBr), redox potential (Fe/Mn) and changes in the endogenic carbonate precipitation (TIC, delta(18) OCarb) indicate changes within the lake. Low productivity characterised the lake from the late Pleistocene until 6.6 cal ka BP, and increased rapidly afterwards. Lake level remained low until the LGM, but water depth increased to a maximum during the late glacial and remained high into the early Holocene. Subsequently, the water level decreased to its present stage. Today the lake system is mainly climatically controlled, but the depositional regime is also driven by internal limnogeological processes.}, language = {en} } @article{HeinrichBalanzateguiBensetal.2018, author = {Heinrich, Ingo and Balanzategui, Daniel and Bens, Oliver and Blasch, Gerald and Blume, Theresa and Boettcher, Falk and Borg, Erik and Brademann, Brian and Brauer, Achim and Conrad, Christopher and Dietze, Elisabeth and Dr{\"a}ger, Nadine and Fiener, Peter and Gerke, Horst H. and G{\"u}ntner, Andreas and Heine, Iris and Helle, Gerhard and Herbrich, Marcus and Harfenmeister, Katharina and Heussner, Karl-Uwe and Hohmann, Christian and Itzerott, Sibylle and Jurasinski, Gerald and Kaiser, Knut and Kappler, Christoph and Koebsch, Franziska and Liebner, Susanne and Lischeid, Gunnar and Merz, Bruno and Missling, Klaus Dieter and Morgner, Markus and Pinkerneil, Sylvia and Plessen, Birgit and Raab, Thomas and Ruhtz, Thomas and Sachs, Torsten and Sommer, Michael and Spengler, Daniel and Stender, Vivien and St{\"u}ve, Peter and Wilken, Florian}, title = {Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE)}, series = {Vadose zone journal}, volume = {17}, journal = {Vadose zone journal}, number = {1}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2018.06.0116}, pages = {25}, year = {2018}, abstract = {The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes.}, language = {en} } @article{HerzschuhMischkeMeyeretal.2010, author = {Herzschuh, Ulrike and Mischke, Steffen and Meyer, Hanno and Plessen, Birgit and Zhang, Chengjun}, title = {Lake nutrient variability inferred from elemental (C, N, S) and isotopic (delta C-13, delta N-15) analyses of aquatic plant macrofossils}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2010.05.011}, year = {2010}, abstract = {This paper aims to highlight the potential of using elemental and stable isotope analyses of aquatic macrophytes in palaeolimnological studies. Potamogeton pectinatus material was collected from modem plants (n=68) and from late glacial and Holocene-aged sediments from Koucha Lake (northeastern Tibetan Plateau; 34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.). It was analyzed for delta C-13(Potamogeton) (modern: -23 to 0 parts per thousand, fossil: -19 to -4 parts per thousand) and delta N-15(Potamogeton) (modern: -11.0 to +13.8 parts per thousand, fossil: -9.5 to +6.7 parts per thousand) in addition to elemental carbon and nitrogen (modem C/N-Potamogeton: 7 to 29; fossil: 13 to 68) and sulfur (fossil: 188-899 mu mol/g dry weight). Fossil data were interpreted in terms of palaeo-nutrient availability and palaeo-productivity based on the modem relationships between various proxies and certain environmental data. Productivity of Potamogeton pectinatus mats at Koucha Lake as indicated by palaeo-epsilon(Potamogeton-TIC) (i.e. the enrichment of delta C-13(Potamogeton) relative to the delta(CTIC)-C-13) was reduced during periods of high conductivity, especially between 10.3 and 7.4 cal kyr BP. Potamogeton pectinatus material from these periods was also characterized by high S-Potamogeton indicating high sulfide concentrations and anoxic conditions within the sediments. However, C/N- Potamogeton ratios and delta N-15(Potamogeton) from the lower core section were found to have been altered by decompositional processes. A pronounced shift in the aquatic productivity of Lake Koucha occurred at similar to 7.4 cal kyr BP when the hydrological conditions shifted towards an open lake system and water depth increased. At this time a strong increase in productivity led to a strong decrease in the water HCO3- concentration as inferred from the application of a epsilon-(Potamogeton-TIC)-InHCO3- transfer function. A comparison of reconstructed productivity changes from Koucha Lake with further environmental proxies suggests that primary productivity changes are probably a function of internal lake dynamics and were only indirectly triggered by climate change.}, language = {en} } @article{HerzschuhMischkeMeyeretal.2010, author = {Herzschuh, Ulrike and Mischke, Steffen and Meyer, Hanno and Plessen, Birgit and Zhang, Chengjun}, title = {Using variations in the stable carbon isotope composition of macrophyte remains to quantify nutrient dynamics in lakes}, issn = {0921-2728}, doi = {10.1007/s10933-009-9365-0}, year = {2010}, abstract = {The apparent isotope enrichment factor epsilon(macrophyte) of submerged plants (epsilon(macrophyte-DIC) = delta C-13(macrophyte) - delta C-13(DIC)) is indicative of dissolved inorganic carbon (DIC) supply in neutral to alkaline waters and is related to variations in aquatic productivity (Papadimitriou et al. in Limnol Oceanogr 50:1084-1095, 2005). This paper aims to evaluate the usage of epsilon(macrophyte) inferred from isotopic analyses of submerged plant fossils in addition to analyses of lake carbonate as a palaeolimnological proxy for former HCO3 (-) concentrations. Stable carbon isotopic analysis of modern Potamogeton pectinatus leaves and its host water DIC from the Tibetan Plateau and Central Yakutia (Russia) yielded values between -23.3 and +0.4aEuro degrees and between +14.0 and +6.5aEuro degrees, respectively. Values of epsilon (Potamogeton-DIC) (range -15.4 to +1.1aEuro degrees) from these lakes are significantly correlated with host water HCO3 (-) concentration (range 78-2,200 mg/l) (r = -0.86; P < 0.001), thus allowing for the development of a transfer function. Palaeo-epsilon (Potamogeton-ostracods) values from Luanhaizi Lake on the NE Tibetan Plateau, as inferred from the stable carbon isotope measurement of fossil Potamogeton pectinatus seeds (range -24 to +2.8aEuro degrees) and ostracods (range -7.8 to +7.5\%) range between -14.8 and 1.6aEuro degrees. Phases of assumed disequilibrium between delta C-13(DIC) and delta C-13(ostracods) known to occur in charophyte swards (as indicated by the deposition of charophyte fossils) were excluded from the analysis of palaeo-epsilon. The application of the epsilon (Potamogeton-DIC)-HCO3 (-) transfer function yielded a median palaeo-HCO3 (-) -concentration of 290 mg/l. Variations in the dissolved organic carbon supply compare well with aquatic plant productivity changes and lake level variability as inferred from a multiproxy study of the same record including analyses of plant macrofossils, ostracods, carbonate and organic content.}, language = {en} } @article{HuangOberhaenslivonSuchodoletzetal.2014, author = {Huang, Xiangtong and Oberhaensli, Hedi and von Suchodoletz, Hans and Prasad, Sushma and Sorrel, Philippe and Plessen, Birgit and Mathis, Marie and Usubaliev, Raskul}, title = {Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {103}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.09.012}, pages = {134 -- 152}, year = {2014}, abstract = {The hydrology of western Central Asia is highly sensitive to climatic perturbations. In order to understand its long-term variability and to infer linkages between precipitation and atmospheric and oceanic systems, we conducted a thorough sedimentary and geochemical study on a composite core retrieved in lake Son Kul (central Kyrgyzstan). A multi-proxy approach was conducted on lake sediments based on grain size analyses, magnetic susceptibility, total organic carbon (TOC), total nitrogen (TN) and carbon and oxygen isotope analyses on bulk and biogenic materials (ostracoda and molluscs shells) at a resolution equivalent to ca 40 years, aiming to characterise the sequence of palaeolimnological changes in Son Kul. As indicated by delta O-18 record of bulk carbonates, mainly consisting of aragonite, the Holocene hydrological balance was negative during most of time, suggesting an excess of evaporation (E) over precipitation (P). Limnological conditions fluctuated rapidly before 5000 cal yr BP indicating significant changes in regional hydrology and climate. In particular, the long-term negative hydrological balance was impeded by several short stages with marked increase of precipitation, lasting several decades to a few centuries (e.g., 8300-8200, 6900-6700, 6300-6100, 5500-5400, 5300-5200 and 3100 -3000 cal yr BP). Precipitation changes as inferred from 8180 data are also documented by increased minerogenic detritus and higher TOC. We propose that the seasonal pattern of precipitation varied transiently in western Central Asia during the Holocene, although evaporation changes may also account for the rapid changes observed in delta O-18 data. When the annual water balance was less critical (P <= E), the excess of water might be ascribed to increased precipitation during cold seasons mainly because winter precipitation has more negative delta O-18 than its summer equivalent. Conversely, when the annual water balance is negative (P E), the moisture was mainly delivered during the warm season, as between 5000 and 2000 cal yr BP. Our results thus imply that moisture sources could have changed as well during the Holocene. Moisture was delivered as today mainly during summer from the extended Caspian-Aral Basin and eastern Mediterranean, although Arctic and even North Atlantic seas might be important moisture sources when seasonal precipitation was dominated by winter precipitation. We hypothesise that warming Arctic and North Atlantic seas were important for the North Hemisphere circulation during the cold season. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KienelPlessenSchettleretal.2013, author = {Kienel, Ulrike and Plessen, Birgit and Schettler, Georg and Weise, Stephan and Pinkerneil, Sylvia and Boehnel, Harald and Englebrecht, Amy C. and Haug, Gerald H.}, title = {Sensitivity of a hypersaline crater lake to the seasonality of rainfall, evaporation, and guano supply}, series = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, volume = {183}, journal = {Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology}, number = {2}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {1863-9135}, doi = {10.1127/1863-9135/2013/0405}, pages = {135 -- 152}, year = {2013}, abstract = {The hypersaline crater lake and its catchment on seabird island Isabel (Pacific, off Mexico) was studied to explore the influence of strong seasonal variations in rainfall/evaporation and guano contribution on its limnology. The hypersaline lake water (HSW, 78 \%) is up to 2.2-times enriched in inert ions relative to mean seawater. Rainfall during summer dilutes the HSW to form a less saline rainwater body (RWB) above a chemolimnion between 2 and 4 m water depth. The RWB is inhabited first by diatoms and ostracods followed later on by cyanobacteria and ciliates. Evaporation of > 1.5 m depth of lake water over the dry season increases the salinity of the RWB until the water column becomes isohaline at HSW concentrations in the late dry season. Differences in the stable isotope composition of water and primary producers in RWB and HSW reflect this development. Introduction of seabird guano and the decrease of salinity fuel a high primary production in the RWB with higher delta(CDIC)-C-13 and delta(13)Corg of particulate organic matter than in the HSW. The high N supply leads to high delta N-15 NH4 values (+ 39 \% in the HSW) as the consequence of ammonia volatilization that is strongest during guano maturation and with evaporative salinity increase from the HSW. Precipitation of carbonate (calcite and aragonite) from the RWB and the HSW is hindered by the high concentration of guano-derived P. This inhibition may be overcome with evaporative supersaturation during particularly dry conditions. Carbonate may also precipitate during particularly wet conditions from the dilute RWB, where the P-concentration is reduced during an active phytoplankton production that raises the pH. Differences in the stable isotope signatures of carbon and oxygen in HSW and RWB (+ 5 \% delta(CDIC)-C-13 and -3 \% d18OH2O) suggest the processes of carbonate precipitation can be distinguished based on the isotope signature of the carbonates deposited. Changes in the lake system are indicated when lower temperatures and higher rainfall in the 2006 wet season introduced more and less mature guano to the lake. The lower pH was accompanied by lower ammonia volatilization and carbonate precipitation as indicated by an increased concentration of NH4, Ca, Sr and DIC, while delta H-2, delta(NNH4)-N-15, and salinity were lower. According to our results, the observed sediment laminations should reflect the introduction of catchment material (including guano) with runoff, the RWB plankton production, and the carbonate precipitation in relation to its origin and seasonality.}, language = {en} } @article{KwiecienArzLamyetal.2009, author = {Kwiecien, Olga and Arz, Helge Wolfgang and Lamy, Frank and Plessen, Birgit and Bahr, Andr{\´e} and Haug, Gerald H.}, title = {North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial}, issn = {0033-5894}, doi = {10.1016/j.yqres.2008.12.004}, year = {2009}, abstract = {Based on Proxy records from western Black Sea cores, we provide a comprehensive Study of climate change during the last glacial maximum and late-glacial period in the Black Sea region. For the first time we present a record of relative changes in precipitation for NW Anatolia based on variations in the terrigenous supply expressed as detrital carbonate concentration. The good correspondence between reconstructed rainfall intensity in NW Anatolia and past western Mediterranean sea Surface temperatures (SSTs) implies that during the glacial period the precipitation variability was controlled, like today, by Mediterranean cyclonic disturbances. Periods of reduced precipitation correlate well with low SSTs in the Mediterranean related to Heinrich events H1 and H2. Stable oxygen isotopes and lithological and mineralogical data point to a significant modification in the dominant freshwater/sediment source concomitant to the meltwater inflow after 16.4 cal ka BP. This change implies intensification of the northern sediment source and, with other records from the Mediterranean region, consistently suggests a reorganization of the atmospheric circulation pattern affecting the hydrology of the European continent. The early deglacial northward retreat of both atmospheric and oceanic polar fronts was responsible for the warming in the Mediterranean region, leading simultaneously to more humid conditions in central and northern Europe.}, language = {en} } @misc{KaempfPlessenLauterbachetal.2019, author = {K{\"a}mpf, Lucas and Plessen, Birgit and Lauterbach, Stefan and Nantke, Carla and Meyer, Hanno and Chapligin, Bernhard and Brauer, Achim}, title = {Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-55000}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550004}, pages = {7}, year = {2019}, abstract = {Lake sediments are increasingly explored as reliable paleoflood archives. In addition to established flood proxies including detrital layer thickness, chemical composition, and grain size, we explore stable oxygen and carbon isotope data as paleoflood proxies for lakes in catchments with carbonate bedrock geology. In a case study from Lake Mondsee (Austria), we integrate high-resolution sediment trapping at a proximal and a distal location and stable isotope analyses of varved lake sediments to investigate flood-triggered detrital sediment flux. First, we demonstrate a relation between runoff, detrital sediment flux, and isotope values in the sediment trap record covering the period 2011-2013 CE including 22 events with daily (hourly) peak runoff ranging from 10 (24) m(3) s(-1) to 79 (110) m(3) s(-1). The three- to ten-fold lower flood-triggered detrital sediment deposition in the distal trap is well reflected by attenuated peaks in the stable isotope values of trapped sediments. Next, we show that all nine flood-triggered detrital layers deposited in a sediment record from 1988 to 2013 have elevated isotope values compared with endogenic calcite. In addition, even two runoff events that did not cause the deposition of visible detrital layers are distinguished by higher isotope values. Empirical thresholds in the isotope data allow estimation of magnitudes of the majority of floods, although in some cases flood magnitudes are overestimated because local effects can result in too-high isotope values. Hence we present a proof of concept for stable isotopes as reliable tool for reconstructing flood frequency and, although with some limitations, even for flood magnitudes.}, language = {en} } @article{KaempfPlessenLauterbachetal.2019, author = {K{\"a}mpf, Lucas and Plessen, Birgit and Lauterbach, Stefan and Nantke, Carla and Meyer, Hanno and Chapligin, Bernhard and Brauer, Achim}, title = {Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy}, series = {Geology / the Geological Society of America}, volume = {48}, journal = {Geology / the Geological Society of America}, number = {1}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {1943-2682}, doi = {10.1130/G46593.1}, pages = {3 -- 7}, year = {2019}, abstract = {Lake sediments are increasingly explored as reliable paleoflood archives. In addition to established flood proxies including detrital layer thickness, chemical composition, and grain size, we explore stable oxygen and carbon isotope data as paleoflood proxies for lakes in catchments with carbonate bedrock geology. In a case study from Lake Mondsee (Austria), we integrate high-resolution sediment trapping at a proximal and a distal location and stable isotope analyses of varved lake sediments to investigate flood-triggered detrital sediment flux. First, we demonstrate a relation between runoff, detrital sediment flux, and isotope values in the sediment trap record covering the period 2011-2013 CE including 22 events with daily (hourly) peak runoff ranging from 10 (24) m(3) s(-1) to 79 (110) m(3) s(-1). The three- to ten-fold lower flood-triggered detrital sediment deposition in the distal trap is well reflected by attenuated peaks in the stable isotope values of trapped sediments. Next, we show that all nine flood-triggered detrital layers deposited in a sediment record from 1988 to 2013 have elevated isotope values compared with endogenic calcite. In addition, even two runoff events that did not cause the deposition of visible detrital layers are distinguished by higher isotope values. Empirical thresholds in the isotope data allow estimation of magnitudes of the majority of floods, although in some cases flood magnitudes are overestimated because local effects can result in too-high isotope values. Hence we present a proof of concept for stable isotopes as reliable tool for reconstructing flood frequency and, although with some limitations, even for flood magnitudes.}, language = {en} } @article{LauterbachWittPlessenetal.2014, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614534741}, pages = {970 -- 984}, year = {2014}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @misc{LauterbachWittPlessenetal.2017, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404085}, pages = {15}, year = {2017}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @article{LechleitnerBreitenbachChengetal.2017, author = {Lechleitner, Franziska A. and Breitenbach, Sebastian Franz Martin and Cheng, Hai and Plessen, Birgit and Rehfeld, Kira and Goswami, Bedartha and Marwan, Norbert and Eroglu, Deniz and Adkins, Jess F. and Haug, Gerald}, title = {Climatic and in-cave influences on delta O-18 and delta C-13 in a stalagmite from northeastern India through the last deglaciation}, series = {Quaternary research : an interdisciplinary journal}, volume = {88}, journal = {Quaternary research : an interdisciplinary journal}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2017.72}, pages = {458 -- 471}, year = {2017}, abstract = {Northeastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (delta O-18 and delta C-13) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16-6ka). We interpret stalagmite delta O-18 as reflecting ISM strength, whereas delta C-13 appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the delta O-18 record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the BOlling-Allerod and Holocene. Local conditions inferred from the delta C-13 record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the delta O-18 record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene.}, language = {en} } @article{LiuAdlerLipusetal.2020, author = {Liu, Qi and Adler, Karsten and Lipus, Daniel and K{\"a}mpf, Horst and Bussert, Robert and Plessen, Birgit and Schulz, Hans-Martin and Krauze, Patryk and Horn, Fabian and Wagner, Dirk and Mangelsdorf, Kai and Alawi, Mashal}, title = {Microbial signatures in deep CO2-saturated miocene sediments of the active Hartousov mofette system (NW Czech Republic)}, series = {Frontiers in microbiology}, volume = {11}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.543260}, pages = {21}, year = {2020}, abstract = {The Hartousov mofette system is a natural CO2 degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO2 on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO2 blow out occurred at a depth of 78.5 meter below surface (mbs) suggesting a CO2 reservoir associated with a deep low-permeable CO2-saturated saline aquifer at the transition from Early Miocene terrestrial to lacustrine sediments. Past microbial communities were investigated by hopanoids and glycerol dialkyl glycerol tetraethers (GDGTs) reflecting the environmental conditions during the time of deposition rather than showing a signal of the current deep biosphere. The composition and distribution of the deep microbial community potentially stimulated by the upward migration of CO2 starting during Mid Pleistocene time was investigated by intact polar lipids (IPLs), quantitative polymerase chain reaction (qPCR), and deoxyribonucleic acid (DNA) analysis. The deep biosphere is characterized by microorganisms that are linked to the distribution and migration of the ascending CO2-saturated groundwater and the availability of organic matter instead of being linked to single lithological units of the investigated rock profile. Our findings revealed high relative abundances of common soil and water bacteria, in particular the facultative, anaerobic and potential iron-oxidizing Acidovorax and other members of the family Comamonadaceae across the whole recovered core. The results also highlighted the frequent detection of the putative sulfate-oxidizing and CO2-fixating genus Sulfuricurvum at certain depths. A set of new IPLs are suggested to be indicative for microorganisms associated to CO2 accumulation in the mofette system.}, language = {en} }