@misc{BarboliniWoutersenDupontNivetetal.2020, author = {Barbolini, Natasha and Woutersen, Amber and Dupont-Nivet, Guillaume and Silvestro, Daniele and Tardif-Becquet, Delphine and Coster, Pauline M. C. and Meijer, Niels and Chang, Cun and Zhang, Hou-Xi and Licht, Alexis and Rydin, Catarina and Koutsodendris, Andreas and Han, Fang and Rohrmann, Alexander and Liu, Xiang-Jun and Zhang, Y. and Donnadieu, Yannick and Fluteau, Frederic and Ladant, Jean-Baptiste and Le Hir, Guillaume and Hoorn, M. Carina}, title = {Cenozoic evolution of the steppe-desert biome in Central Asia}, series = {Science Advances}, volume = {6}, journal = {Science Advances}, number = {41}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.abb8227}, pages = {16}, year = {2020}, abstract = {The origins and development of the arid and highly seasonal steppe-desert biome in Central Asia, the largest of its kind in the world, remain largely unconstrained by existing records. It is unclear how Cenozoic climatic, geological, and biological forces, acting at diverse spatial and temporal scales, shaped Central Asian ecosystems through time. Our synthesis shows that the Central Asian steppe-desert has existed since at least Eocene times but experienced no less than two regime shifts, one at the Eocene-Oligocene Transition and one in the mid-Miocene. These shifts separated three successive "stable states," each characterized by unique floral and faunal structures. Past responses to disturbance in the Asian steppe-desert imply that modern ecosystems are unlikely to recover their present structures and diversity if forced into a new regime. This is of concern for Asian steppes today, which are being modified for human use and lost to desertification at unprecedented rates.}, language = {en} } @article{LichtCosterOcakogluetal.2017, author = {Licht, Alexis and Coster, P. and Ocakoglu, F. and Campbell, C. and Metais, G. and Mulch, Andreas and Taylor, M. and Kappelman, John and Beard, K. Christopher}, title = {Tectono-stratigraphy of the Orhaniye Basin, Turkey: Implications for collision chronology and Paleogene biogeography of central Anatolia}, series = {Journal of Asian earth sciences}, volume = {143}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2017.03.033}, pages = {45 -- 58}, year = {2017}, abstract = {Located along the Izmir-Ankara-Erzincan Suture (IAES), the Maastrichtian - Paleogene Orhaniye Basin has yielded a highly enigmatic-yet poorly dated- Paleogene mammal fauna, the endemic character of which has suggested high faunal provincialism associated with paleogeographic isolation of the Anatolian landmass during the early Cenozoic. Despite its biogeographic significance, the tectono-stratigraphic history of the Orhaniye Basin has been poorly documented; Here, we combine sedimentary, magnetostratigraphic, and geochronological data to infer the chronology and depositional history of the Orhaniye Basin. We then assess how our new data and interpretations for the Orhaniye Basin impact (1) the timing and mechanisms of seaway closure along the IAES and (2) the biogeographic evolution of Anatolia. Our results show that the Orhaniye Basin initially developed as a forearc basin during the Maastrichtian, before shifting to a retroarc foreland basin setting sometime between the early Paleocene and 44 Ma. This chronology supports a two-step scenario for the assemblage of the central Anatolian landmass, with incipient collision during the Paleocene - Early Eocene and final seaway retreat along the IAES during the earliest Late Eocene after the last marine incursion into the foreland basin. Our dating for the Orhaniye mammal fauna (44-43 Ma) indicates the persistence of faunal endemism in northern Anatolia until at least the late Lutetian despite the advanced stage of IAES closure. The tectonic evolution of dispersal corridors linking northern Anatolia with adjacent parts of Eurasia was not directly associated with IAES closure and consecutive uplifts, but rather with the build-up of continental bridges on the margins of Anatolia, in the Alpine and Tibetan-Himalayan orogens.}, language = {en} } @article{LichtDupontNivetPullenetal.2016, author = {Licht, Alexis and Dupont-Nivet, Guillaume and Pullen, A. and Kapp, P. and Abels, Hemmo A. and Lai, Z. and Guo, Z. and Abell, Jordan and Giesler, D.}, title = {Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms12390}, pages = {885 -- 894}, year = {2016}, abstract = {The onset of modern central Asian atmospheric circulation is traditionally linked to the interplay of surface uplift of the Mongolian and Tibetan-Himalayan orogens, retreat of the Paratethys sea from central Asia and Cenozoic global cooling. Although the role of these players has not yet been unravelled, the vast dust deposits of central China support the presence of arid conditions and modern atmospheric pathways for the last 25 million years (Myr). Here, we present provenance data from older (42-33 Myr) dust deposits, at a time when the Tibetan Plateau was less developed, the Paratethys sea still present in central Asia and atmospheric pCO(2) much higher. Our results show that dust sources and near-surface atmospheric circulation have changed little since at least 42 Myr. Our findings indicate that the locus of central Asian high pressures and concurrent aridity is a resilient feature only modulated by mountain building, global cooling and sea retreat.}, language = {en} } @misc{LichtDupontNivetPullenetal.2016, author = {Licht, Alexis and Dupont-Nivet, Guillaume and Pullen, Alex and Kapp, Paul and Abels, Hemmo A. and Lai, Zulong and Guo, ZhaoJie and Abell, Jordan and Giesler, Dominique}, title = {Resilience of the Asian atmospheric circulation shown by paleogene dust provenance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1114}, issn = {1866-8372}, doi = {10.25932/publishup-43638}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436381}, pages = {8}, year = {2016}, abstract = {The onset of modern central Asian atmospheric circulation is traditionally linked to the interplay of surface uplift of the Mongolian and Tibetan-Himalayan orogens, retreat of the Paratethys sea from central Asia and Cenozoic global cooling. Although the role of these players has not yet been unravelled, the vast dust deposits of central China support the presence of arid conditions and modern atmospheric pathways for the last 25 million years (Myr). Here, we present provenance data from older (42-33 Myr) dust deposits, at a time when the Tibetan Plateau was less developed, the Paratethys sea still present in central Asia and atmospheric pCO(2) much higher. Our results show that dust sources and near-surface atmospheric circulation have changed little since at least 42 Myr. Our findings indicate that the locus of central Asian high pressures and concurrent aridity is a resilient feature only modulated by mountain building, global cooling and sea retreat.}, language = {en} } @article{LichtDupontNivetWinetal.2018, author = {Licht, Alexis and Dupont-Nivet, Guillaume and Win, Zaw and Swe, Hnin Hnin and Kaythi, Myat and Roperch, Pierrick and Ugrai, Tamas and Littell, Virginia and Park, Diana and Westerweel, Jan and Jones, Dominic and Poblete, Fernando and Aung, Day Wa and Huang, Huasheng and Hoorn, Carina and Sein, Kyaing}, title = {Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence}, series = {Geological Society of America bulletin}, volume = {131}, journal = {Geological Society of America bulletin}, number = {5-6}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B35002.1}, pages = {730 -- 748}, year = {2018}, abstract = {The geological history of the Burmese subduction margin, where India obliquely subducts below Indochina, remains poorly documented although it is key to deciphering geodynamic models for the evolution of the broader Tibetan-Himalayan orogen. Various scenarios for the evolution of the orogen have been proposed, including a collision of India with Myanmar in the Paleogene, a significant extrusion of Myanmar and Indochina from the India-Asia collision zone, or very little change in paleogeography and subduction regime since the India-Asia collision. This article examines the history of the Burmese forearc basin, with a particular focus on Eocene-Oligocene times to reconstruct the evolution of the Burmese margin during the early stages of the India-Asia collision. We report on sedimentological, geochemical, petrographical, and geochronological data from the Chindwin Basin-the northern part of the Burmese forearc-and integrate these results with previous data from other basins in central Myanmar. Our results show that the Burmese margin acted as a regular Andean-type subduction margin until the late middle Eocene, with a forearc basin that was open to the trench and fed by the denudation of the Andean volcanic arc to the east. We show that the modern tectonic configuration of central Myanmar formed 39-37 million years ago, when the Burmese margin shifted from an Andean-type margin to a hyper-oblique margin. The forearc basin was quickly partitioned into individual pull-apart basins, bounded to the west by a quickly emerged accretionary prism, and to the east by synchronously exhumed basement rocks, including coeval high-grade metamorphics. We interpret this shift as resulting from the onset of strike-slip deformation on the subduction margin leading to the formation of a paleo-sliver plate, with a paleo fault system in the accretionary prism, pull-apart basins in the forearc, and another paleo fault system in the backarc. This evolution implies that hyper-oblique convergence below the Burmese margin is at least twice older than previously thought. Our results reject any India-Asia convergence scenario involving an early Paleogene collision of India with Myanmar. In contrast, our results validate conservative geodynamic models arguing for a close-to-modern precollisional paleogeometry for the Indochina Peninsula, and indicate that any post-collisional rotation of Indochina, if it occurred at all, must have been achieved by the late middle Eocene.}, language = {en} } @article{LichtPullenKappetal.2016, author = {Licht, Alexis and Pullen, A. and Kapp, P. and Abell, Jordan and Giesler, N.}, title = {Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau}, series = {Geological Society of America bulletin}, volume = {128}, journal = {Geological Society of America bulletin}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B31375.1}, pages = {944 -- 956}, year = {2016}, abstract = {The loess and paleosol sequences of the Chinese Loess Plateau are composed of Quaternary dust, the origin of which has been the subject of considerable debate. Some recent U-Pb geochronological studies of eolian zircons have proposed the existence of two major wind pathways: from the north and northwest, through the Badan Jaran, Tengger, and Mu Us Deserts during interglacials, and from the west, through the Qaidam Basin during glacials. Others have emphasized the importance of Yellow River sediment supply in the Chinese Loess Plateau sediment budget. However, tracking dust source regions through U-Pb dating in a statistically robust manner is particularly complex given the similar age peaks in the age probability distributions of potential source regions in Central Asia. This paper presents 2410 new U-Pb ages of detrital zircons from wind-eroded strata, Quaternary eolian deposits, and modern river sands in central China in order to increase the robustness and the spatial resolution of zircon age distributions in dust source regions. We then propose a new mixture modeling technique to statistically address the contribution of these different sources to the Chinese Loess Plateau sedimentary budget. Our contribution estimates indicate that eolian supply to the Chinese Loess Plateau is dominated (60\%-70\%) by reworking of Yellow River sediment. Moreover, evidence of Qaidam Basin-sourced zircons (15\%-20\%) in both loess (glacial) and paleosol (interglacial) layers corroborates the existence of an erosive wind pathway through the Qaidam Basin during glacials and implies that a substantial portion of the interglacial dust is recycled from older glacial loess. We propose that sediment reworking of Yellow River sediment and older loess deposits by wind on the Chinese Loess Plateau homogenized the eolian zircon populations toward a glacial provenance due to higher (2-20 times) dust accumulation rates during glacials. These findings suggest that the Chinese Loess Plateau has evolved as a more dynamic landform than previous thought, where wind deflation, fluvial input, lateral transport, and accumulation of sediment are equally important. These internal reworking effects would then significantly bias the paleoclimatic interpretations based on eolian dust properties of the Chinese Loess Plateau.}, language = {en} } @article{MeijerDupontNivetAbelsetal.2019, author = {Meijer, Niels and Dupont-Nivet, Guillaume and Abels, Hemmo A. and Kaya, Mustafa Y. and Licht, Alexis and Xiao, Meimei and Zhang, Yang and Roperch, Pierrick and Poujol, Marc and Lai, Zhongping and Guo, Zhaojie}, title = {Central Asian moisture modulated by proto-Paratethys Sea incursions since the early Eocene}, series = {Earth and planetary science letters}, volume = {510}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.12.031}, pages = {73 -- 84}, year = {2019}, abstract = {The establishment and evolution of the Asian monsoons and arid interior have been linked to uplift of the Tibetan Plateau, retreat of the inland proto-Paratethys Sea and global cooling during the Cenozoic. However, the respective role of these driving mechanisms remains poorly constrained. This is partly due to a lack of continental records covering the key Eocene epoch marked by the onset of Tibetan Plateau uplift, proto-Paratethys Sea incursions and long-term global cooling. In this study, we reconstruct paleoenvironments in the Xining Basin, NE Tibet, to show a long-term drying of the Asian continental interior from the early Eocene to the Oligocene. Superimposed on this trend are three alternations between arid mudflat and wetter saline lake intervals, which are interpreted to reflect atmospheric moisture fluctuations in the basin. We date these fluctuations using magnetostratigraphy and the radiometric age of an intercalated tuff layer. The first saline lake interval is tentatively constrained to the late Paleocene-early Eocene. The other two are firmly dated between similar to 46 Ma (top magnetochron C21n) and similar to 41 Ma (base C18r) and between similar to 40 Ma (base C18n) and similar to 37 Ma (top C17n). Remarkably, these phases correlate in time with highstands of the proto-Paratethys Sea. This strongly suggests that these sea incursions enhanced westerly moisture supply as far inland as the Xining Basin. We conclude that the proto-Paratethys Sea constituted a key driver of Asian climate and should be considered in model and proxy interpretations. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{MuellerLichtCampbelletal.2019, author = {Mueller, Megan A. and Licht, Alexis and Campbell, C. and Ocakoglu, F. and Taylor, Marc Hollis and Burch, L. and Ugrai, Tamas and Kaya, M. and Kurtoglu, B. and Coster, P. M. C. and Metais, Mustafa Y{\"u}cel and Beard, Kenneth Christopher}, title = {Collision Chronology Along the Izmir-Ankara-Erzincan Suture Zone: Insights From the Saricakaya Basin, Western Anatolia}, series = {Tectonics}, volume = {38}, journal = {Tectonics}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2019TC005683}, pages = {3652 -- 3674}, year = {2019}, abstract = {Debate persists concerning the timing and geodynamics of intercontinental collision, style of syncollisional deformation, and development of topography and fold-and-thrust belts along the >1,700-km-long Izmir-Ankara-Erzincan suture zone (IAESZ) in Turkey. Resolving this debate is a necessary precursor to evaluating the integrity of convergent margin models and kinematic, topographic, and biogeographic reconstructions of the Mediterranean domain. Geodynamic models argue either for a synchronous or diachronous collision during either the Late Cretaceous and/or Eocene, followed by Eocene slab breakoff and postcollisional magmatism. We investigate the collision chronology in western Anatolia as recorded in the sedimentary archives of the 90-km-long Saricakaya Basin perched at shallow structural levels along the IAESZ. Based on new zircon U-Pb geochronology and depositional environment and sedimentary provenance results, we demonstrate that the Saricakaya Basin is an Eocene sedimentary basin with sediment sourced from both the IAESZ and Sogut Thrust fault to the south and north, respectively, and formed primarily by flexural loading from north-south shortening along the syncollisional Sogut Thrust. Our results refine the timing of collision between the Anatolides and Pontide terranes in western Anatolia to Maastrichtian-Middle Paleocene and Early Eocene crustal shortening and basin formation. Furthermore, we demonstrate contemporaneous collision, deformation, and magmatism across the IAESZ, supporting synchronous collision models. We show that regional postcollisional magmatism can be explained by renewed underthrusting instead of slab breakoff. This new IAESZ chronology provides additional constraints for kinematic, geodynamic, and biogeographic reconstructions of the Mediterranean domain.}, language = {en} } @misc{TardifFluteauDonnadieuetal.2020, author = {Tardif, Delphine and Fluteau, Fr{\´e}d{\´e}ric and Donnadieu, Yannick and Le Hir, Guillaume and Ladant, Jean-Baptiste and Sepulchre, Pierre and Licht, Alexis and Poblete, Fernando and Dupont-Nivet, Guillaume}, title = {The origin of Asian monsoons}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1436}, issn = {1866-8372}, doi = {10.25932/publishup-51677}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516770}, pages = {21}, year = {2020}, abstract = {The Cenozoic inception and development of the Asian monsoons remain unclear and have generated much debate, as several hypotheses regarding circulation patterns at work in Asia during the Eocene have been proposed in the few last decades. These include (a) the existence of modern-like monsoons since the early Eocene; (b) that of a weak South Asian monsoon (SAM) and little to no East Asian monsoon (EAM); or (c) a prevalence of the Intertropical Convergence Zone (ITCZ) migrations, also referred to as Indonesian-Australian monsoon (I-AM). As SAM and EAM are supposed to have been triggered or enhanced primarily by Asian palaeogeographic changes, their possible inception in the very dynamic Eocene palaeogeographic context remains an open question, both in the modelling and field-based communities. We investigate here Eocene Asian climate conditions using the IPSL-CM5A2 (Sepulchre et al., 2019) earth system model and revised palaeogeographies. Our Eocene climate simulation yields atmospheric circulation patterns in Asia substantially different from modern conditions. A large high-pressure area is simulated over the Tethys ocean, which generates intense low tropospheric winds blowing southward along the western flank of the proto-Himalayan-Tibetan plateau (HTP) system. This low-level wind system blocks, to latitudes lower than 10 degrees N, the migration of humid and warm air masses coming from the Indian Ocean. This strongly contrasts with the modern SAM, during which equatorial air masses reach a latitude of 20-25 degrees N over India and southeastern China. Another specific feature of our Eocene simulation is the widespread subsidence taking place over northern India in the midtroposphere (around 5000 m), preventing deep convective updraught that would transport water vapour up to the condensation level. Both processes lead to the onset of a broad arid region located over northern India and over the HTP. More humid regions of high seasonality in precipitation encircle this arid area, due to the prevalence of the Intertropical Convergence Zone (ITCZ) migrations (or Indonesian-Australian monsoon, I-AM) rather than monsoons. Although the existence of this central arid region may partly result from the specifics of our simulation (model dependence and palaeogeographic uncertainties) and has yet to be confirmed by proxy records, most of the observational evidence for Eocene monsoons are located in the highly seasonal transition zone between the arid area and the more humid surroundings. We thus suggest that a zonal arid climate prevailed over Asia before the initiation of monsoons that most likely occurred following Eocene palaeogeographic changes. Our results also show that precipitation seasonality should be used with caution to infer the presence of a monsoonal circulation and that the collection of new data in this arid area is of paramount importance to allow the debate to move forward.}, language = {en} } @article{TardifFluteauDonnadieuetal.2020, author = {Tardif, Delphine and Fluteau, Fr{\´e}d{\´e}ric and Donnadieu, Yannick and Le Hir, Guillaume and Ladant, Jean-Baptiste and Sepulchre, Pierre and Licht, Alexis and Poblete, Fernando and Dupont-Nivet, Guillaume}, title = {The origin of Asian monsoons}, series = {Climate of the Past}, volume = {16}, journal = {Climate of the Past}, number = {3}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1814-9332}, doi = {10.5194/cp-16-847-2020}, pages = {847 -- 865}, year = {2020}, abstract = {The Cenozoic inception and development of the Asian monsoons remain unclear and have generated much debate, as several hypotheses regarding circulation patterns at work in Asia during the Eocene have been proposed in the few last decades. These include (a) the existence of modern-like monsoons since the early Eocene; (b) that of a weak South Asian monsoon (SAM) and little to no East Asian monsoon (EAM); or (c) a prevalence of the Intertropical Convergence Zone (ITCZ) migrations, also referred to as Indonesian-Australian monsoon (I-AM). As SAM and EAM are supposed to have been triggered or enhanced primarily by Asian palaeogeographic changes, their possible inception in the very dynamic Eocene palaeogeographic context remains an open question, both in the modelling and field-based communities. We investigate here Eocene Asian climate conditions using the IPSL-CM5A2 (Sepulchre et al., 2019) earth system model and revised palaeogeographies. Our Eocene climate simulation yields atmospheric circulation patterns in Asia substantially different from modern conditions. A large high-pressure area is simulated over the Tethys ocean, which generates intense low tropospheric winds blowing southward along the western flank of the proto-Himalayan-Tibetan plateau (HTP) system. This low-level wind system blocks, to latitudes lower than 10 degrees N, the migration of humid and warm air masses coming from the Indian Ocean. This strongly contrasts with the modern SAM, during which equatorial air masses reach a latitude of 20-25 degrees N over India and southeastern China. Another specific feature of our Eocene simulation is the widespread subsidence taking place over northern India in the midtroposphere (around 5000 m), preventing deep convective updraught that would transport water vapour up to the condensation level. Both processes lead to the onset of a broad arid region located over northern India and over the HTP. More humid regions of high seasonality in precipitation encircle this arid area, due to the prevalence of the Intertropical Convergence Zone (ITCZ) migrations (or Indonesian-Australian monsoon, I-AM) rather than monsoons. Although the existence of this central arid region may partly result from the specifics of our simulation (model dependence and palaeogeographic uncertainties) and has yet to be confirmed by proxy records, most of the observational evidence for Eocene monsoons are located in the highly seasonal transition zone between the arid area and the more humid surroundings. We thus suggest that a zonal arid climate prevailed over Asia before the initiation of monsoons that most likely occurred following Eocene palaeogeographic changes. Our results also show that precipitation seasonality should be used with caution to infer the presence of a monsoonal circulation and that the collection of new data in this arid area is of paramount importance to allow the debate to move forward.}, language = {en} } @article{WesterweelRoperchLichtetal.2019, author = {Westerweel, Jan and Roperch, Pierrick and Licht, Alexis and Dupont-Nivet, Guillaume and Win, Zaw and Poblete, Fernando and Ruffet, Gilles and Swe, Hnin Hnin and Thi, Myat Kai and Aung, Day Wa}, title = {Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data}, series = {Nature geoscience}, volume = {12}, journal = {Nature geoscience}, number = {10}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/s41561-019-0443-2}, pages = {863 -- 868}, year = {2019}, abstract = {Convergence between the Indian and Asian plates has reshaped large parts of Asia, changing regional climate and biodiversity, yet geodynamic models fundamentally diverge on how convergence was accommodated since the India-Asia collision. Here we report palaeomagnetic data from the Burma Terrane, which is at the eastern edge of the collision zone and is famous for its Cretaceous amber biota, to better determine the evolution of the India-Asia collision. The Burma Terrane was part of a Trans-Tethyan island arc and stood at a near-equatorial southern latitude at similar to 95 Ma, suggesting island endemism for the Burmese amber biota. The Burma Terrane underwent significant clockwise rotation between similar to 80 and 50 Ma, causing its subduction margin to become hyper-oblique. Subsequently, it was translated northward on the Indian Plate by an exceptional distance of at least 2,000 km along a dextral strike-slip fault system in the east. Our reconstructions are only compatible with geodynamic models involving an initial collision of India with a near-equatorial Trans-Tethyan subduction system at similar to 60 Ma, followed by a later collision with the Asian margin.}, language = {en} }