@article{KamannHusserDreizleretal.2017, author = {Kamann, Sebastian and Husser, T. -O. and Dreizler, S. and Emsellem, E. and Weilbacher, Peter Michael and Martens, S. and Bacon, R. and den Brok, M. and Giesers, B. and Krajnovic, Davor and Roth, Martin M. and Wendt, Martin and Wisotzki, Lutz}, title = {A stellar census in globular clusters with MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {473}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2719}, pages = {5591 -- 5616}, year = {2017}, abstract = {This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3 sigma) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.}, language = {en} } @article{FinleyBoucheContinietal.2017, author = {Finley, Hayley and Bouche, Nicolas and Contini, Thierry and Epinat, Benoit and Bacon, Roland and Brinchmann, Jarle and Cantalupo, Sebastiano and Erroz-Ferrer, Santiago and Marino, Aella Anna and Maseda, Michael and Richard, Johan and Schroetter, Ilane and Verhamme, Anne and Weilbacher, Peter Michael and Wendt, Martin and Wisotzki, Lutz}, title = {Galactic winds with MUSE: A direct detection of Fe II* emission from a z=1.29 galaxy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {605}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730428}, pages = {15}, year = {2017}, abstract = {Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M-star = 8 x 10(9) M-circle dot, star formation rate SFR = 77(-25)(+40) M-circle dot yr(-1), and star formation rate surface brightness Sigma(SFR) = 1.6 M-circle dot kpc(-2) within the [OII] lambda lambda 3727, 3729 half-light radius R-1/2, ([OII]) = 2.76 +/- 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s(-1), we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at lambda 2365, lambda 2396, lambda 2612, and lambda 2626, at 1.2-2.4-1.5-2.7 x 10-(18) erg s(-1) cm(-2) respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R-1/2, (Fe II*) = 4.1 +/- 0.4 kpc, is 70\% larger than the stellar continuum (R-1/2,(star) similar or equal to 2.34 +/- 0.17) or the [O II] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s(-1), which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p - v diagram along that axis. These features are consistent with a bi-conical outflow.}, language = {en} } @article{RichterNuzaFoxetal.2017, author = {Richter, Philipp and Nuza, S. E. and Fox, Andrew J. and Wakker, Bart P. and Lehner, N. and Ben Bekhti, Nadya and Fechner, Cora and Wendt, Martin and Howk, J. Christopher and Muzahid, S. and Ganguly, R. and Charlton, Jane C.}, title = {An HST/COS legacy survey of high-velocity ultraviolet absorption in the}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {607}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201630081}, pages = {90}, year = {2017}, abstract = {Context. The Milky Way is surrounded by large amounts of diffuse gaseous matter that connects the stellar body of our Galaxy with its large-scale Local Group (LG) environment. Aims. To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Methods. Along 270 sightlines we measure metal absorption in the lines of Si II, Si III, C II, and C IV and associated H I 21 cm emission in HVCs in the velocity range vertical bar v(LSR)vertical bar = 100-500 km s(-1). With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the HVC absorption characteristics with that of damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of the LG (CLUES project).}, language = {en} } @article{WendtHusserKamannetal.2017, author = {Wendt, Martin and Husser, Tim-Oliver and Kamann, Sebastian and Monreal-Ibero, Ana and Richter, Philipp and Brinchmann, Jarle and Dreizler, Stefan and Weilbacher, Peter Michael and Wisotzki, Lutz}, title = {Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy A pilot study based on globular cluster NGC 6397}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {607}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201629816}, pages = {16}, year = {2017}, abstract = {Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims. We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods. This analysis utilized the fitting residuals of individual stellar spectra of NGC6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results. This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na-I and K-I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines.}, language = {en} }