@article{TiscarenoMitchellMurrayetal.2013, author = {Tiscareno, Matthew S. and Mitchell, Colin J. and Murray, Carl D. and Di Nino, Daiana and Hedman, Matthew M. and Schmidt, J{\"u}rgen and Burns, Joseph A. and Cuzzi, Jeffrey N. and Porco, Carolyn C. and Beurle, Kevin and Evans, Michael W.}, title = {Observations of Ejecta clouds produced by impacts onto Saturn's rings}, series = {Science}, volume = {340}, journal = {Science}, number = {6131}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1233524}, pages = {460 -- 464}, year = {2013}, abstract = {We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system.}, language = {en} } @article{CuzziBurnsCharnozetal.2010, author = {Cuzzi, Jeff N. and Burns, Joseph A. and Charnoz, S{\´e}bastien and Clark, Roger N. and Colwell, Josh E. and Dones, Luke and Esposito, Larry W. and Filacchione, Gianrico and French, Richard G. and Hedman, Matthew M. and Kempf, Sascha and Marouf, Essam A. and Murray, Carl D. and Nicholson, Phillip D. and Porco, Carolyn C. and Schmidt, J{\"u}rgen and Showalter, Mark R. and Spilker, Linda J. and Spitale, Joseph N. and Srama, Ralf and Sremcević, Miodrag and Tiscareno, Matthew Steven and Weiss, John}, title = {An evolving view of Saturn's dynamic rings}, issn = {0036-8075}, doi = {10.1126/science.1179118}, year = {2010}, abstract = {We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.}, language = {en} }