@article{TotzEliseevPetrietal.2018, author = {Totz, Sonja Juliana and Eliseev, Alexey V. and Petri, Stefan and Flechsig, Michael and Caesar, Levke and Petoukhov, Vladimir and Coumou, Dim}, title = {The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-11-665-2018}, pages = {665 -- 679}, year = {2018}, abstract = {Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0. The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.}, language = {en} } @article{StadtherrCoumouPetoukhovetal.2016, author = {Stadtherr, Lisa and Coumou, Dim and Petoukhov, Vladimir and Petri, Stefan and Rahmstorf, Stefan}, title = {Record Balkan floods of 2014 linked to planetary wave resonance}, series = {Science Advances}, volume = {2}, journal = {Science Advances}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.1501428}, pages = {6}, year = {2016}, abstract = {In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.}, language = {en} } @misc{LevermannPetoukhovScheweetal.2016, author = {Levermann, Anders and Petoukhov, Vladimir and Schewe, Jacob and Schellnhuber, Hans Joachim}, title = {Abrupt monsoon transitions as seen in paleorecords can be explained by moisture-advection feedback}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {113}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1603130113}, pages = {E2348 -- E2349}, year = {2016}, language = {en} }