@article{WacheMcCarthyRisseetal.2015, author = {Wache, Remi and McCarthy, Denis N. and Risse, Sebastian and Kofod, Guggi}, title = {Rotary Motion Achieved by New Torsional Dielectric Elastomer Actuators Design}, series = {IEEE ASME transactions on mechatronics}, volume = {20}, journal = {IEEE ASME transactions on mechatronics}, number = {2}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1083-4435}, doi = {10.1109/TMECH.2014.2301633}, pages = {975 -- 977}, year = {2015}, abstract = {This paper reports a new way to produce a rotation motion actuated by dielectric elastomer actuators. Two specific electrode designs have been developed and the rotation of the actuator centers has been demonstrated and measured. At low strains, the rotation shows a nearly quadratic dependence with the voltage. This behavior was used to compare the performances between the two proposed designs. Among the tested configurations, a maximal rotation of 10 degrees was achieved.}, language = {en} } @article{StoyanovKolloscheRisseetal.2011, author = {Stoyanov, Hristiyan and Kollosche, Matthias and Risse, Sebastian and McCarthy, Denis N. and Kofod, Guggi}, title = {Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control}, series = {Soft matter}, volume = {7}, journal = {Soft matter}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c0sm00715c}, pages = {194 -- 202}, year = {2011}, abstract = {Soft, physically crosslinking, block copolymer elastomers were filled with surface-treated nanoparticles, in order to evaluate the possibility for improvement of their properties when used as soft dielectric actuators. The nanoparticles led to improvements in dielectric properties, however they also reinforced the elastomer matrix. Comparing dielectric spectra of composites with untreated and surface-treated particles showed a measurable influence of the surface on the dielectric loss behaviour for high filler amounts, strongly indicating an improved host-guest interaction for the surface-treated particles. Breakdown strength was measured using a test bench and was found to be in good agreement with the results from the actuation measurements. Actuation responses predicted by a model for prestrained actuators agreed well with measurements up to a filler amount of 20\%(vol). Strong improvements in actuation behaviour were observed, with an optimum near 15\%(vol) nanoparticles, corresponding to a reduction in electrical field of 27\% for identical actuation strains. The use of physically crosslinking elastomer ensured the mechanical properties of the matrix elastomer were unchanged by nanoparticles effecting the crosslinking reaction, contrary to similar experiments performed with chemically crosslinking elastomers. This allows for a firm conclusion about the positive effects of surface-treated nanoparticles on actuation behavior.}, language = {en} } @article{JordanMcCarthySchleppleetal.2011, author = {Jordan, Grace and McCarthy, Denis N. and Schlepple, N. and Krissler, Jan and Schroeder, H. and Kofod, Guggi}, title = {Actuated micro-optical submount using a dielectric elastomer actuator}, series = {IEEE ASME transactions on mechatronics}, volume = {16}, journal = {IEEE ASME transactions on mechatronics}, number = {1}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1083-4435}, doi = {10.1109/TMECH.2010.2089991}, pages = {98 -- 102}, year = {2011}, abstract = {Analysis of the operating characteristics of a dielectric elastomer actuator (DEA) submount for the high-precision positioning of optical components in one dimension is presented. Precise alignment of a single-mode fiber is demonstrated and variation of the sensitivity of the submount motion by changing the bias voltage is confirmed. A comparison of the performance of the DEA submount with a piezoelectric alignment stage is made, which demonstrates that DEAs could present a very attractive, low-cost alternative to currently used manual technologies in overcoming the hurdle of expensive packaging of single-mode optical components.}, language = {en} } @article{KofodRisseStoyanovetal.2011, author = {Kofod, Guggi and Risse, Sebastian and Stoyanov, Hristiyan and McCarthy, Denis N. and Sokolov, Sergey and Kr{\"a}hnert, Ralph}, title = {Broad-spectrum enhancement of polymer composite dielectric constant at ultra low volume fractions of silica-supported copper nanoparticles}, series = {ACS nano}, volume = {5}, journal = {ACS nano}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/nn103097q}, pages = {1623 -- 1629}, year = {2011}, abstract = {A new strategy for the synthesis of high permittivity polymer composites is demonstrated based on well-defined spatial distribution of ultralow amounts of conductive nanoparticles. The spatial distribution Was realized by immobilizing Cu nanoparticles within the pore system of Alia microspheres, preventing direct contact between individual Cu particles. Both Cu-loaded and unloaded silica microspheres were-then used as fillers in polymer composites prepared with thermoplastic SEBS rubber is the matrix. With a metallic Cu content of about 0.26 vol \% In the compoilte, a relative increase of 94\% In real permittivity was obtained. No Cu-induced relaxations were observed in the dielectric spectrum within the studied frequency range of 0.1 Hz to 1 MHz. When related to the amount of conductive nanoparticles, the obtained composites achieve the highest broad spectrum enhancement of permittivity ever reported for a polymer based composite.}, language = {en} } @article{KussmaulRisseKofodetal.2011, author = {Kussmaul, Bjoern and Risse, Sebastian and Kofod, Guggi and Wache, Remi and Wegener, Michael and McCarthy, Denis N. and Kr{\"u}ger, Hartmut and Gerhard, Reimund}, title = {Enhancement of dielectric permittivity and electromechanical response in silicone elastomers molecular grafting of organic dipoles to the macromolecular Network}, series = {Advanced functional materials}, volume = {21}, journal = {Advanced functional materials}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201100884}, pages = {4589 -- 4594}, year = {2011}, abstract = {A novel method is established for permittivity enhancement of a silicone matrix for dielectric elastomer actuators (DEAs) by molecular level modifications of the elastomer matrix. A push-pull dipole is synthesized to be compatible with the silicone crosslinking chemistry, allowing for direct grafting to the crosslinker molecules in a one-step film formation process. This method prevents agglomeration and yields elastomer films that are homogeneous down to the molecular level. The dipole-to-silicone network grafting reaction is studied by FTIR. The chemical, thermal, mechanical and electrical properties of films with dipole contents ranging from 0 wt\% to 13.4 wt\% were thoroughly characterized. The grafting of dipoles modifies the relative permittivity and the stiffness, resulting in the actuation strain at a given electrical field being improved by a factor of six.}, language = {en} } @article{McCarthyStoyanovRychkovetal.2012, author = {McCarthy, Denis N. and Stoyanov, Hristiyan and Rychkov, Dmitry and Ragusch, Huelya and Melzer, Michael and Kofod, Guggi}, title = {Increased permittivity nanocomposite dielectrics by controlled interfacial interactions}, series = {Composites science and technology}, volume = {72}, journal = {Composites science and technology}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0266-3538}, doi = {10.1016/j.compscitech.2012.01.026}, pages = {731 -- 736}, year = {2012}, abstract = {The use of nanoparticles in polymer composite dielectrics has promised great improvements, but useful results have been elusive. Here, the importance of the interfacial interactions between the nanoparticles and the polymer matrix are investigated in TiO2 nanocomposites for dielectric materials using surface functionalisation. The interface is observed to dominate the nanocomposite properties and leads to a threefold increase in permittivity at volume fractions as low as 10\%. Surface functionalisation of the filler nanoparticles with silanes allows control of this interface, avoiding significant degradation of the other important material properties, particularly electrical breakdown strength, and resulting in a material that is demonstrated successfully as an active material in a dielectric elastomer actuator application with increased work output compared to the pure polymer. Although further permittivity increases are observed when the interface regions have formed a percolation network, the other material properties deteriorate. The observation of percolation behaviour allows the interface thickness to be estimated.}, language = {en} } @article{StoyanovKolloscheMcCarthyetal.2010, author = {Stoyanov, Hristiyan and Kollosche, Matthias and McCarthy, Denis N. and Kofod, Guggi}, title = {Molecular composites with enhanced energy density for electroactive polymers}, issn = {0959-9428}, doi = {10.1039/C0jm00519c}, year = {2010}, abstract = {Actuators based on soft dielectric elastomers deform due to electric field induced Maxwell's stress, interacting with the mechanical properties of the material. The relatively high operating voltages of such actuators can be reduced by increasing the permittivity of the active material, while maintaining the mechanical properties and high electrical breakdown strength. Approaches relying on the use of highly polarizable molecules or conjugated polymers have so far provided the best results, however it has been difficult to maintain high breakdown strengths. In this work, a new approach for increasing the electrostatic energy density of a soft polymer based on molecular composites is presented, relying on chemically grafting soft gel-state pi-conjugated conducting macromolecules (polyaniline (PANI)) to a flexible elastomer backbone SEBS-g-MA (poly-styrene-co-ethylene-co-butylene-co-styrene-g-maleic anhydride). The approach was found to result in composites of increased permittivity (470\% over the elastomer matrix) with hardly any reduction in breakdown strength (from 140 to 120 V mu m(-1)), resulting in a large increase in stored electrostatic energy. This led to an improvement in the measured electromechanical response as well as in the maximum actuation strain. A transition was observed when amounts of PANI exceeded 2 vol\%, which was ascribed to the exhaustion of the MA- functionality of the SEBS-g-MA. The transition led to drastic increases in permittivity and conductivity, and a sharp drop in electrical breakdown strength. Although the transition caused further improvement of the electromechanical response, the reduction in electrical breakdown strength caused a limitation of the maximum achievable actuation strain.}, language = {en} }