@misc{QuarmbyMoennigMugeleetal.2023, author = {Quarmby, Andrew and M{\"o}nnig, Jamal and Mugele, Hendrik and Henschke, Jakob and Kim, MyoungHwee and Cassel, Michael and Engel, Tilman}, title = {Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {830}, issn = {1866-8364}, doi = {10.25932/publishup-58760}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587603}, pages = {20}, year = {2023}, abstract = {Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95\% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of "medial collapse". Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn.}, language = {en} } @article{QuarmbyMoennigMugeleetal.2023, author = {Quarmby, Andrew and M{\"o}nnig, Jamal and Mugele, Hendrik and Henschke, Jakob and Kim, MyoungHwee and Cassel, Michael and Engel, Tilman}, title = {Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review}, series = {Frontiers in Sports and Active Living}, journal = {Frontiers in Sports and Active Living}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2624-9367}, doi = {10.3389/fspor.2022.1012471}, pages = {20}, year = {2023}, abstract = {Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95\% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of "medial collapse". Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn.}, language = {en} } @article{MuellerHadzicMugeleetal.2017, author = {M{\"u}ller, Juliane and Hadzic, Miralem and Mugele, Hendrik and Stoll, Josefine and M{\"u}ller, Steffen and Mayer, Frank}, title = {Effect of high-intensity perturbations during core-specific sensorimotor exercises on trunk muscle activation}, series = {Journal of biomechanics}, volume = {70}, journal = {Journal of biomechanics}, publisher = {Elsevier}, address = {Oxford}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2017.12.013}, pages = {212 -- 218}, year = {2017}, abstract = {Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk. However, the influence of high-intensity perturbations on training efficiency is unclear within this context. Sixteen participants (29 +/- 2 yrs; 175 +/- 8 cm; 69 +/- 13 kg) were prepared with a 12-lead bilateral trunk EMG. Warm-up on a dynamometer was followed by maximum voluntary isometric trunk (flex/ext) contraction (MVC). Next, participants performed four conditions for a one-legged stance with hip abduction on a stable surface (HA) repeated randomly on an unstable surface (HAP), on a stable surface with perturbation (HA + P), and on an unstable surface with perturbation (HAP + P). Afterwards, bird dog (BD) was performed under the same conditions (BD, BDP, BD + P, BDP + P). A foam pad under the foot (HA) or the knee (BD) was used as an unstable surface. Exercises were conducted on a moveable platform. Perturbations (ACC 50 m/sec(2);100 ms duration;10rep.) were randomly applied in the anterior-posterior direction. The root mean square (RMS) normalized to MVC (\%) was calculated (whole movement cycle). Muscles were grouped into ventral right and left (VR;VL), and dorsal right and left (DR;DL). Ventral Dorsal and right-left ratios were calculated (two way repeated-measures ANOVA;alpha = 0,05). Amplitudes of all muscle groups in bird dog were higher compared to hip abduction (p <= 0.0001; Range: BD: 14 +/- 3\% (BD;VR) to 53 +/- 4\%; HA: 7 +/- 2\% (HA;DR) to 16 +/- 4\% (HA;DR)). EMG-RMS showed significant differences (p < 0.001) between conditions and muscle groups per exercise. Interaction effects were only significant for HA (p = 0.02). No significant differences were present in EMG ratios (p > 0.05). Additional high-intensity perturbations during core-specific sensorimotor exercises lead to increased neuromuscular activity and therefore higher exercise intensities. However, the beneficial effects on trunk function remain unclear. Nevertheless, BD is more suitable to address trunk muscles.}, language = {en} } @misc{PlummerMugeleSteffenetal.2019, author = {Plummer, Ashley and Mugele, Hendrik and Steffen, Kathrin and Stoll, Josefine and Mayer, Frank and M{\"u}ller, Juliane}, title = {General versus sports-specific injury prevention programs in athletes}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {591}, issn = {1866-8364}, doi = {10.25932/publishup-44113}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441131}, pages = {17}, year = {2019}, abstract = {Introduction Injury prevention programs (IPPs) are an inherent part of training in recreational and professional sports. Providing performance-enhancing benefits in addition to injury prevention may help adjust coaches and athletes' attitudes towards implementation of injury prevention into daily routine. Conventional thinking by players and coaches alike seems to suggest that IPPs need to be specific to one's sport to allow for performance enhancement. The systematic literature review aims to firstly determine the IPPs nature of exercises and whether they are specific to the sport or based on general conditioning. Secondly, can they demonstrate whether general, sports-specific or even mixed IPPs improve key performance indicators with the aim to better facilitate long-term implementation of these programs? Methods PubMed and Web of Science were electronically searched throughout March 2018. The inclusion criteria were randomized control trials, publication dates between Jan 2006 and Feb 2018, athletes (11-45 years), injury prevention programs and included predefined performance measures that could be categorized into balance, power, strength, speed/agility and endurance. The methodological quality of included articles was assessed with the Cochrane Collaboration assessment tools. Results Of 6619 initial findings, 22 studies met the inclusion criteria. In addition, reference lists unearthed a further 6 studies, making a total of 28. Nine studies used sports specific IPPs, eleven general and eight mixed prevention strategies. Overall, general programs ranged from 29-57\% in their effectiveness across performance outcomes. Mixed IPPs improved in 80\% balance outcomes but only 20-44\% in others. Sports-specific programs led to larger scale improvements in balance (66\%), power (83\%), strength (75\%), and speed/agility (62\%). Conclusion Sports-specific IPPs have the strongest influence on most performance indices based on the significant improvement versus control groups. Other factors such as intensity, technical execution and compliance should be accounted for in future investigations in addition to exercise modality.}, language = {en} } @article{PlummerMugeleSteffenetal.2019, author = {Plummer, Ashley and Mugele, Hendrik and Steffen, Kathrin and Stoll, Josefine and Mayer, Frank and M{\"u}ller, Juliane}, title = {General versus sports-specific injury prevention programs in athletes}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {8}, publisher = {PLOS 1}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0221346}, pages = {15}, year = {2019}, abstract = {Introduction Injury prevention programs (IPPs) are an inherent part of training in recreational and professional sports. Providing performance-enhancing benefits in addition to injury prevention may help adjust coaches and athletes' attitudes towards implementation of injury prevention into daily routine. Conventional thinking by players and coaches alike seems to suggest that IPPs need to be specific to one's sport to allow for performance enhancement. The systematic literature review aims to firstly determine the IPPs nature of exercises and whether they are specific to the sport or based on general conditioning. Secondly, can they demonstrate whether general, sports-specific or even mixed IPPs improve key performance indicators with the aim to better facilitate long-term implementation of these programs? Methods PubMed and Web of Science were electronically searched throughout March 2018. The inclusion criteria were randomized control trials, publication dates between Jan 2006 and Feb 2018, athletes (11-45 years), injury prevention programs and included predefined performance measures that could be categorized into balance, power, strength, speed/agility and endurance. The methodological quality of included articles was assessed with the Cochrane Collaboration assessment tools. Results Of 6619 initial findings, 22 studies met the inclusion criteria. In addition, reference lists unearthed a further 6 studies, making a total of 28. Nine studies used sports specific IPPs, eleven general and eight mixed prevention strategies. Overall, general programs ranged from 29-57\% in their effectiveness across performance outcomes. Mixed IPPs improved in 80\% balance outcomes but only 20-44\% in others. Sports-specific programs led to larger scale improvements in balance (66\%), power (83\%), strength (75\%), and speed/agility (62\%). Conclusion Sports-specific IPPs have the strongest influence on most performance indices based on the significant improvement versus control groups. Other factors such as intensity, technical execution and compliance should be accounted for in future investigations in addition to exercise modality.}, language = {en} } @misc{MugelePlummerSteffenetal.2018, author = {Mugele, Hendrik and Plummer, Ashley and Steffen, Kathrin and Stoll, Josefine and Mayer, Frank and M{\"u}ller, Juliane}, title = {General versus sports-specific injury prevention programs in athletes}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {481}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419935}, pages = {16}, year = {2018}, abstract = {Introduction Annually, 2 million sports-related injuries are reported in Germany of which athletes contribute to a large proportion. Multiple sport injury prevention programs designed to decrease acute and overuse injuries in athletes have been proven effective. Yet, the programs' components, general or sports-specific, that led to these positive effects are uncertain. Despite not knowing about the superiority of sports-specific injury prevention programs, coaches and athletes alike prefer more specialized rather than generalized exercise programs. Therefore, this systematic review aimed to present the available evidence on how general and sports-specific prevention programs affect injury rates in athletes. Methods PubMed and Web of Science were electronically searched throughout April 2018. The inclusion criteria were publication dates Jan 2006-Dec 2017, athletes (11-45 years), exercise-based injury prevention programs and injury incidence. The methodological quality was assessed with the Cochrane Collaboration assessment tools. Results Of the initial 6619 findings, 15 studies met the inclusion criteria. In addition, 13 studies were added from reference lists and external sources making a total of 28 studies. Of which, one used sports-specific, seven general and 20 mixed prevention strategies. Twenty-four studies revealed reduced injury rates. Of the four ineffective programs, one was general and three mixed. Conclusion The general and mixed programs positively affect injury rates. Sports-specific programs are uninvestigated and despite wide discussion regarding the definition, no consensus was reached. Defining such terminology and investigating the true effectiveness of such IPPs is a potential avenue for future research.}, language = {en} } @article{MugelePlummerBaritelloetal.2018, author = {Mugele, Hendrik and Plummer, Ashley and Baritello, Omar and Towe, Maggie and Brecht, Pia and Mayer, Frank}, title = {Accuracy of training recommendations based on a treadmill multistage incremental exercise test}, series = {PLOS ONE}, volume = {13}, journal = {PLOS ONE}, number = {10}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0204696}, pages = {1 -- 12}, year = {2018}, abstract = {Competitive runners will occasionally undergo exercise in a laboratory setting to obtain predictive and prescriptive information regarding their performance. The present research aimed to assess whether the physiological demands of lab-based treadmill running (TM) can simulate that of over-ground (OG) running using a commonly used protocol. Fifteen healthy volunteers with a weekly mileage of ≥ 20 km over the past 6 months and treadmill experience participated in this cross-sectional study. Two stepwise incremental tests until volitional exhaustion was performed in a fixed order within one week in an Outpatient Clinic research laboratory and outdoor athletic track. Running velocity (IATspeed), heart rate (IATHR) and lactate concentration at the individual anaerobic threshold (IATbLa) were primary endpoints. Additionally, distance covered (DIST), maximal heart rate (HRmax), maximal blood lactate concentration (bLamax) and rate of perceived exertion (RPE) at IATspeed were analyzed. IATspeed, DIST and HRmax were not statistically significantly different between conditions, whereas bLamax and RPE at IATspeed showed statistical significance (p < 0.05). Apart from RPE at IATspeed, IATspeed, DIST, HRmax and bLamax strongly correlate between conditions (r = 0.815-0.988). High reliability between conditions provides strong evidence to suggest that running on a treadmill are physiologically comparable to that of OG and that training recommendations and be made with assurance.}, language = {en} } @misc{MugelePlummerBaritelloetal.2018, author = {Mugele, Hendrik and Plummer, Ashley and Baritello, Omar and Towe, Maggie and Brecht, Pia and Mayer, Frank}, title = {Accuracy of training recommendations based on a treadmill multistage incremental exercise test}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {477}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419697}, pages = {12}, year = {2018}, abstract = {Competitive runners will occasionally undergo exercise in a laboratory setting to obtain predictive and prescriptive information regarding their performance. The present research aimed to assess whether the physiological demands of lab-based treadmill running (TM) can simulate that of over-ground (OG) running using a commonly used protocol. Fifteen healthy volunteers with a weekly mileage of ≥ 20 km over the past 6 months and treadmill experience participated in this cross-sectional study. Two stepwise incremental tests until volitional exhaustion was performed in a fixed order within one week in an Outpatient Clinic research laboratory and outdoor athletic track. Running velocity (IATspeed), heart rate (IATHR) and lactate concentration at the individual anaerobic threshold (IATbLa) were primary endpoints. Additionally, distance covered (DIST), maximal heart rate (HRmax), maximal blood lactate concentration (bLamax) and rate of perceived exertion (RPE) at IATspeed were analyzed. IATspeed, DIST and HRmax were not statistically significantly different between conditions, whereas bLamax and RPE at IATspeed showed statistical significance (p < 0.05). Apart from RPE at IATspeed, IATspeed, DIST, HRmax and bLamax strongly correlate between conditions (r = 0.815-0.988). High reliability between conditions provides strong evidence to suggest that running on a treadmill are physiologically comparable to that of OG and that training recommendations and be made with assurance.}, language = {en} }