@article{ReeveNicholsonAltafetal.2022, author = {Reeve, Holly A. and Nicholson, Jake and Altaf, Farieha and Lonsdale, Thomas H. and Preissler, Janina and Lauterbach, Lars and Lenz, Oliver and Leimk{\"u}hler, Silke and Hollmann, Frank and Paul, Caroline E. and Vincent, Kylie A.}, title = {A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H}, series = {Chemical communications : ChemComm}, volume = {58}, journal = {Chemical communications : ChemComm}, number = {75}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/d2cc02411j}, pages = {10540 -- 10543}, year = {2022}, abstract = {We demonstrate a recycling system for synthetic nicotinamide cofactor analogues using a soluble hydrogenase with turnover number of >1000 for reduction of the cofactor analogues by H-2. Coupling this system to an ene reductase, we show quantitative conversion of N-ethylmaleimide to N-ethylsuccinimide. The biocatalyst system retained >50\% activity after 7 h.}, language = {en} } @article{LaunDuffusWahlefeldetal.2022, author = {Laun, Konstantin and Duffus, Benjamin R. and Wahlefeld, Stefan and Katz, Sagie and Belger, Dennis Heinz and Hildebrandt, Peter and Mroginski, Maria Andrea and Leimk{\"u}hler, Silke and Zebger, Ingo}, title = {Infrared spectroscopy flucidates the inhibitor binding sites in a metal-dependent formate dehydrogenase}, series = {Chemistry - a European journal}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202201091}, pages = {8}, year = {2022}, abstract = {Biological carbon dioxide (CO2) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.}, language = {en} } @article{StrippDuffusFourmondetal.2022, author = {Stripp, Sven T. and Duffus, Benjamin R. and Fourmond, Vincent and Leger, Christophe and Leimk{\"u}hler, Silke and Hirota, Shun and Hu, Yilin and Jasniewski, Andrew and Ogata, Hideaki and Ribbe, Markus W.}, title = {Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase}, series = {Chemical reviews : CR}, volume = {122}, journal = {Chemical reviews : CR}, number = {14}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {0009-2665}, doi = {10.1021/acs.chemrev.1c00914}, pages = {11900 -- 11973}, year = {2022}, abstract = {Gases like H-2, N-2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N-2, CO2, and CO and the production of H-2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N-2 fixation by nitrogenase and H-2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.}, language = {en} } @article{FujiharaZhangJacksonetal.2022, author = {Fujihara, Kenji M. and Zhang, Bonnie Z. and Jackson, Thomas D. and Ogunkola, Moses and Nijagal, Brunda and Milne, Julia V. and Sallman, David A. and Ang, Ching-Seng and Nikolic, Iva and Kearney, Conor J. and Hogg, Simon J. and Cabalag, Carlos S. and Sutton, Vivien R. and Watt, Sally and Fujihara, Asuka T. and Trapani, Joseph A. and Simpson, Kaylene J. and Stojanovski, Diana and Leimk{\"u}hler, Silke and Haupt, Sue and Phillips, Wayne A. and Clemons, Nicholas J.}, title = {Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction}, series = {Science Advances}, volume = {8}, journal = {Science Advances}, number = {37}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.abm9427}, pages = {13}, year = {2022}, abstract = {The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, al-though the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limit-ing the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.}, language = {en} } @misc{TiedemannIobbiNivolLeimkuehler2022, author = {Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56172}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561728}, pages = {1 -- 15}, year = {2022}, abstract = {The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.}, language = {en} } @article{TiedemannIobbiNivolLeimkuehler2022, author = {Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes}, series = {Molecules}, volume = {27}, journal = {Molecules}, edition = {9}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1420-3049}, doi = {10.3390/molecules27092993}, pages = {1 -- 15}, year = {2022}, abstract = {The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.}, language = {en} }