@article{AmenNagelHedtetal.2020, author = {Amen, Rahma and Nagel, Rebecca and Hedt, Maximilian and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences}, series = {Evolutionary Ecology}, volume = {34}, journal = {Evolutionary Ecology}, number = {3}, publisher = {Springer Science}, address = {Dordrecht}, issn = {0269-7653}, doi = {10.1007/s10682-020-10043-3}, pages = {427 -- 437}, year = {2020}, abstract = {Under an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype-environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated.}, language = {en} } @misc{AmenNagelHedtetal.2020, author = {Amen, Rahma and Nagel, Rebecca and Hedt, Maximilian and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-51871}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518714}, pages = {13}, year = {2020}, abstract = {Under an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype-environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated.}, language = {en} } @article{ApioKabasaKetmaieretal.2010, author = {Apio, Ann and Kabasa, John David and Ketmaier, Valerio and Schroeder, Christoph and Plath, Martin and Tiedemann, Ralph}, title = {Female philopatry and male dispersal in a cryptic, bush-dwelling antelope : a combined molecular and behavioural approach}, issn = {0952-8369}, doi = {10.1111/j.1469-7998.2009.00654.x}, year = {2010}, abstract = {In most mammals, females are philopatric while males disperse in order to avoid inbreeding. We investigated social structure in a solitary ungulate, the bushbuck Tragelaphus sylvaticus in Queen Elizabeth National Park, Uganda by combining behavioural and molecular data. We correlated spatial and social vicinity of individual females with a relatedness score obtained from mitochondrial DNA analysis. Presumed clan members shared the same haplotype, showed more socio-positive interactions and had a common home range. Males had a higher haplotype diversity than females. All this suggests the presence of a matrilineal structure in the study population. Moreover, we tested natal dispersal distances between male and female yearlings and used control region sequences to confirm that females remain in their natal breeding areas whereas males disperse. In microsatellite analysis, males showed a higher genetic variability than females. The impoverished genetic variability of females at both molecular marker sets is consistent with a philopatric and matrilineal structure, while the higher degree of genetic variability of males is congruent with a higher dispersal rate expected in this sex. Evidence even for male long-distance dispersal is brought about by one male carrying a haplotype of a different subspecies, previously not described to occur in this area.}, language = {en} } @misc{AutenriethErnstDeavilleetal.2018, author = {Autenrieth, Marijke and Ernst, Anja and Deaville, Rob and Demaret, Fabien and Ijsseldijk, Lonneke L. and Siebert, Ursula and Tiedemann, Ralph}, title = {Putative origin and maternal relatedness of male sperm whales (Physeter macrocephalus) recently stranded in the North Sea}, series = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, volume = {88}, journal = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1616-5047}, doi = {10.1016/j.mambio.2017.09.003}, pages = {156 -- 160}, year = {2018}, abstract = {The globally distributed sperm whale (Physeter macrocephalus) has a partly matrilineal social structure with predominant male dispersal. At the beginning of 2016, a total of 30 male sperm whales stranded in five different countries bordering the southern North Sea. It has been postulated that these individuals were on a migration route from the north to warmer temperate and tropical waters where females live in social groups. By including samples from four countries (n = 27), this event provided a unique chance to genetically investigate the maternal relatedness and the putative origin of these temporally and spatially co-occuring male sperm whales. To utilize existing genetic resources, we sequenced 422 bp of the mitochondrial control region, a molecular marker for which sperm whale data are readily available from the entire distribution range. Based on four single nucleotide polymorphisms (SNPs) within the mitochondrial control region, five matrilines could be distinguished within the stranded specimens, four of which matched published haplotypes previously described in the Atlantic. Among these male sperm whales, multiple matrilineal lineages co-occur. We analyzed the population differentiation and could show that the genetic diversity of these male sperm whales is comparable to the genetic diversity in sperm whales from the entire Atlantic Ocean. We confirm that within this stranding event, males do not comprise maternally related individuals and apparently include assemblages of individuals from different geographic regions. (c) 2017 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{AutenriethHartmannLahetal.2018, author = {Autenrieth, Marijke and Hartmann, Stefanie and Lah, Ljerka and Roos, Anna and Dennis, Alice B. and Tiedemann, Ralph}, title = {High-quality whole-genome sequence of an abundant Holarctic odontocete, the harbour porpoise (Phocoena phocoena)}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12932}, pages = {1469 -- 1481}, year = {2018}, abstract = {The harbour porpoise (Phocoena phocoena) is a highly mobile cetacean found across the Northern hemisphere. It occurs in coastal waters and inhabits basins that vary broadly in salinity, temperature and food availability. These diverse habitats could drive subtle differentiation among populations, but examination of this would be best conducted with a robust reference genome. Here, we report the first harbour porpoise genome, assembled de novo from an individual originating in the Kattegat Sea (Sweden). The genome is one of the most complete cetacean genomes currently available, with a total size of 2.39 Gb and 50\% of the total length found in just 34 scaffolds. Using 122 of the longest scaffolds, we were able to show high levels of synteny with the genome of the domestic cattle (Bos taurus). Our draft annotation comprises 22,154 predicted genes, which we further annotated through matches to the NCBI nucleotide database, GO categorization and motif prediction. Within the predicted genes, we have confirmed the presence of >20 genes or gene families that have been associated with adaptive evolution in other cetaceans. Overall, this genome assembly and draft annotation represent a crucial addition to the genomic resources currently available for the study of porpoises and Phocoenidae evolution, phylogeny and conservation.}, language = {en} } @article{BleidornHillErseusetal.2009, author = {Bleidorn, Christoph and Hill, Natascha and Ers{\´e}us, Christer and Tiedemann, Ralph}, title = {On the role of character loss in orbiniid phylogeny (Annelida) : molecules vs. morphology}, issn = {1055-7903}, doi = {10.1016/j.ympev.2009.03.022}, year = {2009}, abstract = {Orbiniid phylogeny is matter of debate and incongruence between hypothesis based on molecules and morphology has been repeatedly reported. Moreover, the phylogenetic position of the "oligochaetoid polychaetes" of the taxon Questa varies between morphological and molecular cladistic analyses. Here, we present a nearly complete mitochondrial genome of Questa ersei. The mitochondrial gene order is roughly identical to known orbiniid taxa. Several translocations of tRNAs are unique to Orbiniidae and Questa when compared to other annelid mitochondrial genomes. Additionally, we assembled sequence data of six genes (18S, 16S, cox1, cox3, nad1, nad4) for a representative orbiniid taxon sampling and analysed all data in concatenation using Maximum Likelihood and Bayesian inference. For comparison with morphology we compiled a morphological data matrix for all taxa included in our molecular analyses. Our results strongly support a close relationship of Questa with orbiniids (sequence data, gene order, an 18 bp indel, morphology), and a position nested within orbiniids is recovered in our sequence based analyses. We demonstrate remarkable incongruence of most included morphological characters with the recovered best ML tree and suppose that repeated independent character loss might be an explanation.}, language = {en} } @article{BleidornLanterbecqEeckhautetal.2009, author = {Bleidorn, Christoph and Lanterbecq, Deborah and Eeckhaut, Igor and Tiedemann, Ralph}, title = {A PCR survey of Hox genes in the myzostomid Myzostoma cirriferum}, issn = {0949-944X}, doi = {10.1007/s00427-009-0282-z}, year = {2009}, abstract = {Using degenerate primers, we were able to identify seven Hox genes for the myzostomid Myzostoma cirriferum. The recovered fragments belong to anterior class (Mci_lab, Mci_pb), central class (Mci_Dfd, Mci_Lox5, Mci_Antp, Mci_Lox4), and posterior class (Mci_Post2) paralog groups. Orthology assignment was verified by phylogenetic analyses and presence of diagnostic regions in the homeodomain as well as flanking regions. The presence of Lox5, Lox4, and Post2 supports the inclusion of Myzostomida within Lophotrochozoa. We found signature residues within flanking regions of Lox5, which are also found in annelids, but not in Platyhelminthes. As such the available Hox genes data of myzostomids support an annelid relationship.}, language = {en} } @misc{BleidornPodsiadlowskiZhongetal.2009, author = {Bleidorn, Christoph and Podsiadlowski, Lars and Zhong, Min and Eeckhaut, Igor and Hartmann, Stefanie and Halanych, Kenneth M. and Tiedemann, Ralph}, title = {On the phylogenetic position of Myzostomida : can 77 genes get it wrong?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44893}, year = {2009}, abstract = {Background: Phylogenomic analyses recently became popular to address questions about deep metazoan phylogeny. Ribosomal proteins (RP) dominate many of these analyses or are, in some cases, the only genes included. Despite initial hopes, hylogenomic analyses including tens to hundreds of genes still fail to robustly place many bilaterian taxa. Results: Using the phylogenetic position of myzostomids as an example, we show that phylogenies derived from RP genes and mitochondrial genes produce incongruent results. Whereas the former support a position within a clade of platyzoan taxa, mitochondrial data recovers an annelid affinity, which is strongly supported by the gene order data and is congruent with morphology. Using hypothesis testing, our RP data significantly rejects the annelids affinity, whereas a platyzoan relationship is significantly rejected by the mitochondrial data. Conclusion: We conclude (i) that reliance of a set of markers belonging to a single class of macromolecular complexes might bias the analysis, and (ii) that concatenation of all available data might introduce conflicting signal into phylogenetic analyses. We therefore strongly recommend testing for data incongruence in phylogenomic analyses. Furthermore, judging all available data, we consider the annelid affinity hypothesis more plausible than a possible platyzoan affinity for myzostomids, and suspect long branch attraction is influencing the RP data. However, this hypothesis needs further confirmation by future analyses.}, language = {en} } @article{BonizzoniBourjeaChenetal.2011, author = {Bonizzoni, Mariangela and Bourjea, Jerome and Chen, Bin and Crain, B. J. and Cui, Liwang and Fiorentino, V. and Hartmann, Stefanie and Hendricks, S. and Ketmaier, Valerio and Ma, Xiaoguang and Muths, Delphine and Pavesi, Laura and Pfautsch, Simone and Rieger, M. A. and Santonastaso, T. and Sattabongkot, Jetsumon and Taron, C. H. and Taron, D. J. and Tiedemann, Ralph and Yan, Guiyun and Zheng, Bin and Zhong, Daibin}, title = {Permanent genetic resources added to molecular ecology resources database 1 April 2011-31 May 2011}, series = {Molecular ecology resources}, volume = {11}, journal = {Molecular ecology resources}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {Mol Ecology Resources Primer Dev}, issn = {1755-098X}, doi = {10.1111/j.1755-0998.2011.03046.x}, pages = {935 -- 936}, year = {2011}, abstract = {This article documents the addition of 92 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anopheles minimus, An. sinensis, An. dirus, Calephelis mutica, Lutjanus kasmira, Murella muralis and Orchestia montagui. These loci were cross-tested on the following species: Calephelis arizonensi, Calephelis borealis, Calephelis nemesis, Calephelis virginiensis and Lutjanus bengalensis.}, language = {en} } @misc{CahsanKiemelWestburyetal.2021, author = {Cahsan, Binia De and Kiemel, Katrin and Westbury, Michael V. and Lauritsen, Maike and Autenrieth, Marijke and Gollmann, G{\"u}nter and Schweiger, Silke and Stenberg, Marika and Nystr{\"o}m, Per and Drews, Hauke and Tiedemann, Ralph}, title = {Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {14}, issn = {1866-8372}, doi = {10.25932/publishup-52388}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523883}, pages = {17}, year = {2021}, abstract = {Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Sk{\aa}ne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.}, language = {en} } @article{CahsanKiemelWestburyetal.2021, author = {Cahsan, Binia De and Kiemel, Katrin and Westbury, Michael V. and Lauritsen, Maike and Autenrieth, Marijke and Gollmann, G{\"u}nter and Schweiger, Silke and Stenberg, Marika and Nystr{\"o}m, Per and Drews, Hauke and Tiedemann, Ralph}, title = {Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {14}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {2045-7758}, pages = {15}, year = {2021}, abstract = {Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Sk{\aa}ne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.}, language = {en} } @article{CahsanWestburyParaskevopoulouetal.2021, author = {Cahsan, Binia De and Westbury, Michael V. and Paraskevopoulou, Sofia and Drews, Hauke and Ott, Moritz and Gollmann, G{\"u}nter and Tiedemann, Ralph}, title = {Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian}, series = {Evolutionary Applications}, volume = {14}, journal = {Evolutionary Applications}, number = {6}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {1752-4563}, pages = {12}, year = {2021}, abstract = {Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany.}, language = {en} } @misc{CahsanWestburyParaskevopoulouetal.2021, author = {Cahsan, Binia De and Westbury, Michael V. and Paraskevopoulou, Sofia and Drews, Hauke and Ott, Moritz and Gollmann, G{\"u}nter and Tiedemann, Ralph}, title = {Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-52314}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523140}, pages = {14}, year = {2021}, abstract = {Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany.}, language = {en} } @article{CanitzKirschbaumTiedemann2020, author = {Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species}, series = {PLoS one}, volume = {15}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0240812}, pages = {21}, year = {2020}, abstract = {African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.}, language = {en} } @article{ColangeliSchlaegelOberteggeretal.2019, author = {Colangeli, Pierluigi and Schl{\"a}gel, Ulrike E. and Obertegger, Ulrike and Petermann, Jana S. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Negative phototactic response to UVR in three cosmopolitan rotifers: a video analysis approach}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {844}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-018-3801-y}, pages = {43 -- 54}, year = {2019}, language = {en} } @article{DeCahsanNagelSchedinaetal.2020, author = {De Cahsan, Binia and Nagel, Rebecca and Schedina, Ina-Maria and King, James J. and Bianco, Pier G. and Tiedemann, Ralph and Ketmaier, Valerio}, title = {Phylogeography of the European brook lamprey (Lampetra planeri) and the European river lamprey (Lampetra fluviatilis) species pair based on mitochondrial data}, series = {Journal of fish biology}, volume = {96}, journal = {Journal of fish biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0022-1112}, doi = {10.1111/jfb.14279}, pages = {905 -- 912}, year = {2020}, abstract = {The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity.}, language = {en} } @article{DeCahsanWestburyDrewsetal.2019, author = {De Cahsan, Binia and Westbury, Michael V. and Drews, Hauke and Tiedemann, Ralph}, title = {The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany}, series = {Mitochondrial DNA Part B}, volume = {4}, journal = {Mitochondrial DNA Part B}, number = {1}, publisher = {Taylor \& Francis Group}, address = {London}, issn = {2380-2359}, doi = {10.1080/23802359.2018.1547143}, pages = {498 -- 500}, year = {2019}, abstract = {The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.}, language = {en} } @misc{DeCahsanWestburyDrewsetal.2019, author = {De Cahsan, Binia and Westbury, Michael V. and Drews, Hauke and Tiedemann, Ralph}, title = {The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {532}, issn = {1866-8372}, doi = {10.25932/publishup-42322}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423222}, pages = {3}, year = {2019}, abstract = {The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.}, language = {en} } @article{DiGiacomoDiGiacomoKligeretal.2015, author = {Di Giacomo, Adrian S. and Di Giacomo, Alejandro G. and Kliger, Rafi and Reboreda, Juan C. and Tiedemann, Ralph and Mahler, Bettina}, title = {No evidence of genetic variation in microsatellite and mitochondrial DNA markers among remaining populations of the Strange-tailed Tyrant Alectrurus risora, an endangered grassland species}, series = {Bird conservation international}, volume = {25}, journal = {Bird conservation international}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0959-2709}, doi = {10.1017/S0959270914000203}, pages = {127 -- 138}, year = {2015}, abstract = {The Strange-tailed Tyrant Alectrurus risora (Aves: Tyrannidae) is an endemic species of southern South American grasslands that suffered a 90\% reduction of its original distribution due to habitat transformation. This has led the species to be classified as globally Vulnerable. By the beginning of the last century, populations were partially migratory and moved south during the breeding season. Currently, the main breeding population inhabits the Ibera wetlands in the province of Corrientes, north-east Argentina, where it is resident all year round. There are two remaining small populations in the province of Formosa, north-east Argentina, and in southern Paraguay, which are separated from the main population by the Parana-Paraguay River and its continuous riverine forest habitat. The populations of Corrientes and Formosa are separated by 300 km and the grasslands between populations are non-continuous due to habitat transformation. We used mtDNA sequences and eight microsatellite loci to test if there were evidences of genetic isolation between Argentinean populations. We found no evidence of genetic structure between populations (Phi(ST) = 0.004, P = 0.32; Fst = 0.01, P = 0.06), which can be explained by either retained ancestral polymorphism or by dispersal between populations. We found no evidence for a recent demographic bottleneck in nuclear loci. Our results indicate that these populations could be managed as a single conservation unit on a regional scale. Conservation actions should be focused on preserving the remaining network of areas with natural grasslands to guarantee reproduction, dispersal and prevent further decline of populations.}, language = {en} } @misc{DiGiacomoDiGiacomoKligeretal.2015, author = {Di Giacomo, Adrian S. and Di Giacomo, Alejandro G. and Kliger, Rafi and Reboreda, Juan C. and Tiedemann, Ralph and Mahler, Bettina}, title = {No evidence of genetic variation in microsatellite and mitochondrial DNA markers among remaining populations of the Strange-tailed Tyrant Alectrurus risora, an endangered grassland species}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {583}, doi = {10.25932/publishup-41442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414427}, pages = {127 -- 138}, year = {2015}, abstract = {The Strange-tailed Tyrant Alectrurus risora (Aves: Tyrannidae) is an endemic species of southern South American grasslands that suffered a 90\% reduction of its original distribution due to habitat transformation. This has led the species to be classified as globally Vulnerable. By the beginning of the last century, populations were partially migratory and moved south during the breeding season. Currently, the main breeding population inhabits the Ibera wetlands in the province of Corrientes, north-east Argentina, where it is resident all year round. There are two remaining small populations in the province of Formosa, north-east Argentina, and in southern Paraguay, which are separated from the main population by the Parana-Paraguay River and its continuous riverine forest habitat. The populations of Corrientes and Formosa are separated by 300 km and the grasslands between populations are non-continuous due to habitat transformation. We used mtDNA sequences and eight microsatellite loci to test if there were evidences of genetic isolation between Argentinean populations. We found no evidence of genetic structure between populations (Phi(ST) = 0.004, P = 0.32; Fst = 0.01, P = 0.06), which can be explained by either retained ancestral polymorphism or by dispersal between populations. We found no evidence for a recent demographic bottleneck in nuclear loci. Our results indicate that these populations could be managed as a single conservation unit on a regional scale. Conservation actions should be focused on preserving the remaining network of areas with natural grasslands to guarantee reproduction, dispersal and prevent further decline of populations.}, language = {en} }