@phdthesis{Ermeydan2014, author = {Ermeydan, Mahmut Ali}, title = {Wood cell wall modification with hydrophobic molecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71325}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Wood is used for many applications because of its excellent mechanical properties, relative abundance and as it is a renewable resource. However, its wider utilization as an engineering material is limited because it swells and shrinks upon moisture changes and is susceptible to degradation by microorganisms and/or insects. Chemical modifications of wood have been shown to improve dimensional stability, water repellence and/or durability, thus increasing potential service-life of wood materials. However current treatments are limited because it is difficult to introduce and fix such modifications deep inside the tissue and cell wall. Within the scope of this thesis, novel chemical modification methods of wood cell walls were developed to improve both dimensional stability and water repellence of wood material. These methods were partly inspired by the heartwood formation in living trees, a process, that for some species results in an insertion of hydrophobic chemical substances into the cell walls of already dead wood cells, In the first part of this thesis a chemistry to modify wood cell walls was used, which was inspired by the natural process of heartwood formation. Commercially available hydrophobic flavonoid molecules were effectively inserted in the cell walls of spruce, a softwood species with low natural durability, after a tosylation treatment to obtain "artificial heartwood". Flavonoid inserted cell walls show a reduced moisture absorption, resulting in better dimensional stability, water repellency and increased hardness. This approach was quite different compared to established modifications which mainly address hydroxyl groups of cell wall polymers with hydrophilic substances. In the second part of the work in-situ styrene polymerization inside the tosylated cell walls was studied. It is known that there is a weak adhesion between hydrophobic polymers and hydrophilic cell wall components. The hydrophobic styrene monomers were inserted into the tosylated wood cell walls for further polymerization to form polystyrene in the cell walls, which increased the dimensional stability of the bulk wood material and reduced water uptake of the cell walls considerably when compared to controls. In the third part of the work, grafting of another hydrophobic and also biodegradable polymer, poly(ɛ-caprolactone) in the wood cell walls by ring opening polymerization of ɛ-caprolactone was studied at mild temperatures. Results indicated that polycaprolactone attached into the cell walls, caused permanent swelling of the cell walls up to 5\%. Dimensional stability of the bulk wood material increased 40\% and water absorption reduced more than 35\%. A fully biodegradable and hydrophobized wood material was obtained with this method which reduces disposal problem of the modified wood materials and has improved properties to extend the material's service-life. Starting from a bio-inspired approach which showed great promise as an alternative to standard cell wall modifications we showed the possibility of inserting hydrophobic molecules in the cell walls and supported this fact with in-situ styrene and ɛ-caprolactone polymerization into the cell walls. It was shown in this thesis that despite the extensive knowledge and long history of using wood as a material there is still room for novel chemical modifications which could have a high impact on improving wood properties.}, language = {en} } @phdthesis{FortesMartin2023, author = {Fortes Mart{\´i}n, Rebeca}, title = {Water-in-oil microemulsions as soft-templates to mediate nanoparticle interfacial assembly into hybrid nanostructures}, doi = {10.25932/publishup-57180}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571801}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2023}, abstract = {Hybrid nanomaterials offer the combination of individual properties of different types of nanoparticles. Some strategies for the development of new nanostructures in larger scale rely on the self-assembly of nanoparticles as a bottom-up approach. The use of templates provides ordered assemblies in defined patterns. In a typical soft-template, nanoparticles and other surface-active agents are incorporated into non-miscible liquids. The resulting self-organized dispersions will mediate nanoparticle interactions to control the subsequent self-assembly. Especially interactions between nanoparticles of very different dispersibility and functionality can be directed at a liquid-liquid interface. In this project, water-in-oil microemulsions were formulated from quasi-ternary mixtures with Aerosol-OT as surfactant. Oleyl-capped superparamagnetic iron oxide and/or silver nanoparticles were incorporated in the continuous organic phase, while polyethyleneimine-stabilized gold nanoparticles were confined in the dispersed water droplets. Each type of nanoparticle can modulate the surfactant film and the inter-droplet interactions in diverse ways, and their combination causes synergistic effects. Interfacial assemblies of nanoparticles resulted after phase-separation. On one hand, from a biphasic Winsor type II system at low surfactant concentration, drop-casting of the upper phase afforded thin films of ordered nanoparticles in filament-like networks. Detailed characterization proved that this templated assembly over a surface is based on the controlled clustering of nanoparticles and the elongation of the microemulsion droplets. This process offers versatility to use different nanoparticle compositions by keeping the surface functionalization, in different solvents and over different surfaces. On the other hand, a magnetic heterocoagulate was formed at higher surfactant concentration, whose phase-transfer from oleic acid to water was possible with another auxiliary surfactant in ethanol-water mixture. When the original components were initially mixed under heating, defined oil-in-water, magnetic-responsive nanostructures were obtained, consisting on water-dispersible nanoparticle domains embedded by a matrix-shell of oil-dispersible nanoparticles. Herein, two different approaches were demonstrated to form diverse hybrid nanostructures from reverse microemulsions as self-organized dispersions of the same components. This shows that microemulsions are versatile soft-templates not only for the synthesis of nanoparticles, but also for their self-assembly, which suggest new approaches towards the production of new sophisticated nanomaterials in larger scale.}, language = {en} } @phdthesis{Heiden2018, author = {Heiden, Sophia L.}, title = {Water at α-alumina surfaces}, doi = {10.25932/publishup-42636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426366}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2018}, abstract = {The (0001) surface of α-Al₂O₃ is the most stable surface cut under UHV conditions and was studied by many groups both theoretically and experimentally. Reaction barriers computed with GGA functionals are known to be underestimated. Based on an example reaction at the (0001) surface, this work seeks to improve this rate by applying a hybrid functional method and perturbation theory (LMP2) with an atomic orbital basis, rather than a plane wave basis. In addition to activation barriers, we calculate the stability and vibrational frequencies of water on the surface. Adsorption energies were compared to PW calculations and confirmed PBE+D2/PW stability results. Especially the vibrational frequencies with the B3LYP hybrid functional that have been calculated for the (0001) surface are in good agreement with experimental findings. Concerning the barriers and the reaction rate constant, the expectations are fully met. It could be shown that recalculation of the transition state leads to an increased barrier, and a decreased rate constant when hybrid functionals or LMP2 are applied. Furthermore, the molecular beam scattering of water on (0001) surface was studied. In a previous work by Hass the dissociation was studied by AIMD of molecularly adsorbed water, referring to an equilibrium situation. The experimental method to obtaining this is pinhole dosing. In contrast to this earlier work, the dissociation process of heavy water that is brought onto the surface from a molecular beam source was modeled in this work by periodic ab initio molecular dynamics simulations. This experimental method results in a non-equilibrium situation. The calculations with different surface and beam models allow us to understand the results of the non-equilibrium situation better. In contrast to a more equilibrium situation with pinhole dosing, this gives an increase in the dissociation probability, which could be explained and also understood mechanistically by those calculations. In this work good progress was made in understanding the (1120) surface of α-Al₂O₃ in contact with water in the low-coverage regime. This surface cut is the third most stable one under UHV conditions and has not been studied to a great extent yet. After optimization of the clean, defect free surface, the stability of different adsorbed species could be classified. One molecular minimum and several dissociated species could be detected. Starting from these, reaction rates for various surface reactions were evaluated. A dissociation reaction was shown to be very fast because the molecular minimum is relatively unstable, whereas diffusion reactions cover a wider range from fast to slow. In general, the (112‾0) surface appears to be much more reactive against water than the (0001) surface. In addition to reactivity, harmonic vibrational frequencies were determined for comparison with the findings of the experimental "Interfacial Molecular Spectroscopy" group from Fritz-Haber institute in Berlin. Especially the vibrational frequencies of OD species could be assigned to vibrations from experimental SFG spectra with very good agreement. Also, lattice vibrations were studied in close collaboration with the experimental partners. They perform SFG spectra at very low frequencies to get deep into the lattice vibration region. Correspondingly, a bigger slab model with greater expansion perpendicular to the surface was applied, considering more layers in the bulk. Also with the lattice vibrations we could obtain reasonably good agreement in terms of energy differences between the peaks.}, language = {en} } @phdthesis{Xiong2018, author = {Xiong, Tao}, title = {Vibrationally resolved absorption, emission, resonance Raman and photoelectron spectra of selected organic molecules, associated radicals and cations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418105}, school = {Universit{\"a}t Potsdam}, pages = {iv, 100}, year = {2018}, abstract = {Time-dependent correlation function based methods to study optical spectroscopy involving electronic transitions can be traced back to the work of Heller and coworkers. This intuitive methodology can be expected to be computationally efficient and is applied in the current work to study the vibronic absorption, emission, and resonance Raman spectra of selected organic molecules. Besides, the "non-standard" application of this approach to photoionization processes is also explored. The application section consists of four chapters as described below. In Chapter 4, the molar absorptivities and vibronic absorption/emission spectra of perylene and several of its N-substituted derivatives are investigated. By systematically varying the number and position of N atoms, it is shown that the presence of nitrogen heteroatoms has a negligible effect on the molecular structure and geometric distortions upon electronic transitions, while spectral properties are more sensitive: In particular the number of N atoms is important while their position is less decisive. Thus, N-substitution can be used to fine-tune the optical properties of perylene-based molecules. In Chapter 5, the same methods are applied to study the vibronic absorption/emission and resonance Raman spectra of a newly synthesized donor-acceptor type molecule. The simulated absorption/emission spectra agree fairly well with experimental data, with discrepancies being attributed to solvent effects. Possible modes which may dominate the fine-structure in the vibronic spectra are proposed by analyzing the correlation function with the aid of Raman and resonance Raman spectra. In the next two chapters, besides the above types of spectra, the methods are extended to study photoelectron spectra of several small diamondoid-related systems (molecules, radicals, and cations). Comparison of the photoelectron spectra with available experimental data suggests that the correlation function based approach can describe ionization processes reasonably well. Some of these systems, cationic species in particular, exhibit somewhat peculiar optical behavior, which presents them as possible candidates for functional devices. Correlation function based methods in a more general sense can be very versatile. In fact, besides the above radiative processes, formulas for non-radiative processes such as internal conversion have been derived in literature. Further implementation of the available methods is among our next goals.}, language = {en} } @phdthesis{Vazhappilly2008, author = {Vazhappilly, Tijo Joseph}, title = {Vibrationally enhanced associative photodesorption of H2 (D2) from Ru(0001) : quantum and classical approaches}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19056}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nowadays, reactions on surfaces are attaining great scientific interest because of their diverse applications. Some well known examples are production of ammonia on metal surfaces for fertilizers and reduction of poisonous gases from automobiles using catalytic converters. More recently, also photoinduced reactions at surfaces, useful, \textit{e.g.}, for photocatalysis, were studied in detail. Often, very short laser pulses are used for this purpose. Some of these reactions are occurring on femtosecond (1 fs=\$10^{-15}\$ s) time scales since the motion of atoms (which leads to bond breaking and new bond formation) belongs to this time range. This thesis investigates the femtosecond laser induced associative photodesorption of hydrogen, H\$_2\$, and deuterium, D\$_2\$, from a ruthenium metal surface. Many interesting features of this reaction were explored by experimentalists: (i) a huge isotope effect in the desorption probability of H\$_2\$ and D\$_2\$, (ii) the desorption yield increases non-linearly with the applied visible (vis) laser fluence, and (iii) unequal energy partitioning to different degrees of freedom. These peculiarities are due to the fact that an ultrashort vis pulse creates hot electrons in the metal. These hot electrons then transfer energy to adsorbate vibrations which leads to desorption. In fact, adsorbate vibrations are strongly coupled to metal electrons, \textit{i.e.}, through non-adiabatic couplings. This means that, surfaces introduce additional channels for energy exchange which makes the control of surface reactions more difficult than the control of reactions in the gas phase. In fact, the quantum yield of surface photochemical reactions is often notoriously small. One of the goals of the present thesis is to suggest, on the basis of theoretical simulations, strategies to control/enhance the photodesorption yield of H\$_2\$ and D\$_2\$ from Ru(0001). For this purpose, we suggest a \textit{hybrid scheme} to control the reaction, where the adsorbate vibrations are initially excited by an infrared (IR) pulse, prior to the vis pulse. Both \textit{adiabatic} and \textit{non-adiabatic} representations for photoinduced desorption problems are employed here. The \textit{adiabatic} representation is realized within the classical picture using Molecular Dynamics (MD) with electronic frictions. In a quantum mechanical description, \textit{non-adiabatic} representations are employed within open-system density matrix theory. The time evolution of the desorption process is studied using a two-mode reduced dimensionality model with one vibrational coordinate and one translational coordinate of the adsorbate. The ground and excited electronic state potentials, and dipole function for the IR excitation are taken from first principles. The IR driven vibrational excitation of adsorbate modes with moderate efficiency is achieved by (modified) \$\pi\$-pulses or/and optimal control theory. The fluence dependence of the desorption reaction is computed by including the electronic temperature of the metal calculated from the two-temperature model. Here, our theoretical results show a good agreement with experimental and previous theoretical findings. We then employed the IR+vis strategy in both models. Here, we found that vibrational excitation indeed promotes the desorption of hydrogen and deuterium. To summarize, we conclude that photocontrol of this surface reaction can be achieved by our IR+vis scheme.}, language = {en} } @phdthesis{Kumru2018, author = {Kumru, Baris}, title = {Utilization of graphitic carbon nitride in dispersed media}, doi = {10.25932/publishup-42733}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427339}, school = {Universit{\"a}t Potsdam}, pages = {III, 190}, year = {2018}, abstract = {Utilization of sunlight for energy harvesting has been foreseen as sustainable replacement for fossil fuels, which would also eliminate side effects arising from fossil fuel consumption such as drastic increase of CO2 in Earth atmosphere. Semiconductor materials can be implemented for energy harvesting, and design of ideal energy harvesting devices relies on effective semiconductor with low recombination rate, ease of processing, stability over long period, non-toxicity and synthesis from abundant sources. Aforementioned criteria have attracted broad interest for graphitic carbon nitride (g-CN) materials, metal-free semiconductor which can be synthesized from low cost and abundant precursors. Furthermore, physical properties such as band gap, surface area and absorption can be tuned. g-CN was investigated as heterogeneous catalyst, with diversified applications from water splitting to CO2 reduction and organic coupling reactions. However, low dispersibility of g-CN in water and organic solvents was an obstacle for future improvements. Tissue engineering aims to mimic natural tissues mechanically and biologically, so that synthetic materials can replace natural ones in future. Hydrogels are crosslinked networks with high water content, therefore are prime candidates for tissue engineering. However, the first requirement is synthesis of hydrogels with mechanical properties that are matching to natural tissues. Among different approaches for reinforcement, nanocomposite reinforcement is highly promising. This thesis aims to investigate aqueous and organic dispersions of g-CN materials. Aqueous g-CN dispersions were utilized for visible light induced hydrogel synthesis, where g-CN acts as reinforcer and photoinitiator. Varieties of methodologies were presented for enhancing g-CN dispersibility, from co-solvent method to prepolymer formation, and it was shown that hydrogels with diversified mechanical properties (from skin-like to cartilage-like) are accessible via g-CN utilization. One pot photografting method was introduced for functionalization of g-CN surface which provides functional groups towards enhanced dispersibility in aqueous and organic media. Grafting vinyl thiazole groups yields stable additive-free organodispersions of g-CN which are electrostatically stabilized with increased photophysical properties. Colloidal stability of organic systems provides transparent g-CN coatings and printing g-CN from commercial inkjet printers. Overall, application of g-CN in dispersed media is highly promising, and variety of materials can be accessible via utilization of g-CN and visible light with simple chemicals and synthetic conditions. g-CN in dispersed media will bridge emerging research areas from tissue engineering to energy harvesting in near future.}, language = {en} } @phdthesis{Klier2016, author = {Klier, Dennis Tobias}, title = {Upconversion luminescence in Er-codoped NaYF4 nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98486}, school = {Universit{\"a}t Potsdam}, pages = {ix, 89}, year = {2016}, abstract = {In the context of an increasing population of aging people and a shift of medical paradigm towards an individualized medicine in health care, nanostructured lanthanides doped sodium yttrium fluoride (NaYF4) represents an exciting class of upconversion nanomaterials (UCNM) which are suitable to bring forward developments in biomedicine and -biodetection. Despite the fact that among various fluoride based upconversion (UC) phosphors lanthanide doped NaYF4 is one of the most studied upconversion nanomaterial, many open questions are still remaining concerning the interplay of the population routes of sensitizer and activator electronic states involved in different luminescence upconversion photophysics as well as the role of phonon coupling. The collective work aims to explore a detailed understanding of the upconversion mechanism in nanoscaled NaYF4 based materials co-doped with several lanthanides, e.g. Yb3+ and Er3+ as the "standard" type upconversion nanoparticles (UCNP) up to advanced UCNP with Gd3+ and Nd3+. Especially the impact of the crystal lattice structure as well as the resulting lattice phonons on the upconversion luminescence was investigated in detail based on different mixtures of cubic and hexagonal NaYF4 nanoscaled crystals. Three synthesis methods, depending on the attempt of the respective central spectroscopic questions, could be accomplished in the following work. NaYF4 based upconversion nanoparticles doped with several combination of lanthanides (Yb3+, Er3+, Gd3+ and Nd3+) were synthesized successfully using a hydrothermal synthesis method under mild conditions as well as a co-precipitation and a high temperature co-precipitation technique. Structural information were gathered by means of X-ray diffraction (XRD), electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and inductively coupled plasma atomic emission spectrometry (ICP-OES). The results were discussed in detail with relation to the spectroscopic results. A variable spectroscopic setup was developed for multi parameter upconversion luminescence studies at various temperature 4 K to 328 K. Especially, the study of the thermal behavior of upconversion luminescence as well as time resolved area normalized emission spectra were a prerequisite for the detailed understanding of intramolecular deactivation processes, structural changes upon annealing or Gd3+ concentration, and the role of phonon coupling for the upconversion efficiency. Subsequently it became possible to synthesize UCNP with tailored upconversion luminescence properties. In the end, the potential of UCNP for life science application should be enunciated in context of current needs and improvements of a nanomaterial based optical sensors, whereas the "standard" UCNP design was attuned according to the special conditions in the biological matrix. In terms of a better biocompatibility due to a lower impact on biological tissue and higher penetrability for the excitation light. The first step into this direction was to use Nd3+ ions as a new sensitizer in tridoped NaYF4 based UCNP, whereas the achieved absolute and relative temperature sensitivity is comparable to other types of local temperature sensors in the literature.}, language = {en} } @phdthesis{Hildebrand2016, author = {Hildebrand, Viet}, title = {Twofold switchable block copolymers based on new polyzwitterions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101372}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 170, LXXX}, year = {2016}, abstract = {In complement to the well-established zwitterionic monomers 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate ("SPE") and 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate ("SPP"), the closely related sulfobetaine monomers were synthesized and polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar mass were characterized with respect to their solubility in water, deuterated water, and aqueous salt solutions. These poly(sulfobetaine)s show thermoresponsive behavior in water, exhibiting upper critical solution temperatures (UCST). Phase transition temperatures depend notably on the molar mass and polymer concentration, and are much higher in D2O than in H2O. Also, the phase transition temperatures are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed structure of the zwitterionic side chain, on the other hand. For the polymers with the same zwitterionic side chain, it is found that methacrylamide-based poly(sulfobetaine)s exhibit higher UCST-type transition temperatures than their methacrylate analogs. The extension of the distance between polymerizable unit and zwitterionic groups from 2 to 3 methylene units decreases the UCST-type transition temperatures. Poly(sulfobetaine)s derived from aliphatic esters show higher UCST-type transition temperatures than their analogs featuring cyclic ammonium cations. The UCST-type transition temperatures increase markedly with spacer length separating the cationic and anionic moieties from 3 to 4 methylene units. Thus, apparently small variations of their chemical structure strongly affect the phase behavior of the polyzwitterions in specific aqueous environments. Water-soluble block copolymers were prepared from the zwitterionic monomers and the non-ionic monomer N-isopropylmethacrylamide ("NIPMAM") by the RAFT polymerization. Such block copolymers with two hydrophilic blocks exhibit twofold thermoresponsive behavior in water. The poly(sulfobetaine) block shows an UCST, whereas the poly(NIPMAM) block exhibits a lower critical solution temperature (LCST). This constellation induces a structure inversion of the solvophobic aggregate, called "schizophrenic micelle". Depending on the relative positions of the two different phase transitions, the block copolymer passes through a molecularly dissolved or an insoluble intermediate regime, which can be modulated by the polymer concentration or by the addition of salt. Whereas, at low temperature, the poly(sulfobetaine) block forms polar aggregates that are kept in solution by the poly(NIPMAM) block, at high temperature, the poly(NIPMAM) block forms hydrophobic aggregates that are kept in solution by the poly(sulfobetaine) block. Thus, aggregates can be prepared in water, which switch reversibly their "inside" to the "outside", and vice versa.}, language = {en} } @phdthesis{Haubitz2021, author = {Haubitz, Toni}, title = {Transient absorption spectroscopy}, doi = {10.25932/publishup-53509}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535092}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 176}, year = {2021}, abstract = {The optical properties of chromophores, especially organic dyes and optically active inorganic molecules, are determined by their chemical structures, surrounding media, and excited state behaviors. The classical optical go-to techniques for spectroscopic investigations are absorption and luminescence spectroscopy. While both techniques are powerful and easy to apply spectroscopic methods, the limited time resolution of luminescence spectroscopy and its reliance on luminescent properties can make its application, in certain cases, complex, or even impossible. This can be the case when the investigated molecules do not luminesce anymore due to quenching effects, or when they were never luminescent in the first place. In those cases, transient absorption spectroscopy is an excellent and much more sophisticated technique to investigate such systems. This pump-probe laser-spectroscopic method is excellent for mechanistic investigations of luminescence quenching phenomena and photoreactions. This is due to its extremely high time resolution in the femto- and picosecond ranges, where many intermediate or transient species of a reaction can be identified and their kinetic evolution can be observed. Furthermore, it does not rely on the samples being luminescent, due to the active sample probing after excitation. In this work it is shown, that with transient absorption spectroscopy it was possible to identify the luminescence quenching mechanisms and thus luminescence quantum yield losses of the organic dye classes O4-DBD, S4-DBD, and pyridylanthracenes. Hence, the population of their triplet states could be identified as the competitive mechanism to their luminescence. While the good luminophores O4-DBD showed minor losses, the S4-DBD dye luminescence was almost entirely quenched by this process. However, for pyridylanthracenes, this phenomenon is present in both the protonated and unprotonated forms and moderately effects the luminescence quantum yield. Also, the majority of the quenching losses in the protonated forms are caused by additional non-radiative processes introduced by the protonation of the pyridyl rings. Furthermore, transient absorption spectroscopy can be applied to investigate the quenching mechanisms of uranyl(VI) luminescence by chloride and bromide. The reduction of the halides by excited uranyl(VI) leads to the formation of dihalide radicals X^(·-2). This excited state redox process is thus identified as the quenching mechanism for both halides, and this process, being diffusion-limited, can be suppressed by cryogenically freezing the samples or by observing these interactions in media with a lower dielectric constant, such as ACN and acetone.}, language = {en} } @phdthesis{Nozari2005, author = {Nozari, Samira}, title = {Towards understanding RAFT aqueous heterophase polymerization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5801}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Reversible addition-fragmentation transfer (RAFT) was used as a controlling technique for studying the aqueous heterophase polymerization. The polymerization rates obtained by calorimetric investigation of ab initio emulsion polymerization of styrene revealed the strong influence of the type and combination of the RAFT agent and initiator on the polymerization rate and its profile. The studies in all-glass reactors on the evolution of the characteristic data such as average molecular weight, molecular weight distribution, and average particle size during the polymerization revealed the importance of the peculiarities of the heterophase system such as compartmentalization, swelling, and phase transfer. These results illustrated the important role of the water solubility of the initiator in determining the main loci of polymerization and the crucial role of the hydrophobicity of the RAFT agent for efficient transportation to the polymer particles. For an optimum control during ab-initio batch heterophase polymerization of styrene with RAFT, the RAFT agent must have certain hydrophilicity and the initiator must be water soluble in order to minimize reactions in the monomer phase. An analytical method was developed for the quantitative measurements of the sorption of the RAFT agents to the polymer particles based on the absorption of the visible light by the RAFT agent. Polymer nanoparticles, temperature, and stirring were employed to simulate the conditions of a typical aqueous heterophase polymerization system. The results confirmed the role of the hydrophilicity of the RAFT agent on the effectiveness of the control due to its fast transportation to the polymer particles during the initial period of polymerization after particle nucleation. As the presence of the polymer particles were essential for the transportation of the RAFT agents into the polymer dispersion, it was concluded that in an ab initio emulsion polymerization the transport of the hydrophobic RAFT agent only takes place after the nucleation and formation of the polymer particles. While the polymerization proceeds and the particles grow the rate of the transportation of the RAFT agent increases with conversion until the free monomer phase disappears. The degradation of the RAFT agent by addition of KPS initiator revealed unambigueous evidence on the mechanism of entry in heterophase polymerization. These results showed that even extremely hydrophilic primary radicals, such as sulfate ion radical stemming from the KPS initiator, can enter the polymer particles without necessarily having propagated and reached a certain chain length. Moreover, these results recommend the employment of azo-initiators instead of persulfates for the application in seeded heterophase polymerization with RAFT agents. The significant slower rate of transportation of the RAFT agent to the polymer particles when its solvent (styrene) was replaced with a more hydrophilic monomer (methyl methacrylate) lead to the conclusion that a complicated cooperative and competitive interplay of solubility parameters and interaction parameter with the particles exist, determining an effective transportation of the organic molecules to the polymer particles through the aqueous phase. The choice of proper solutions of even the most hydrophobic organic molecules can provide the opportunity of their sorption into the polymer particles. Examples to support this idea were given by loading the extremely stiff fluorescent molecule, pentacene, and very hydrophobic dye, Sudan IV, into the polymer particles. Finally, the first application of RAFT at room temperature heterophase polymerization is reported. The results show that the RAFT process is effective at ambient temperature; however, the rate of fragmentation is significantly slower. The elevation of the reaction temperature in the presence of the RAFT agent resulted in faster polymerization and higher molar mass, suggesting that the fragmentation rate coefficient and its dependence on the temperature is responsible for the observed retardation.}, subject = {Heterophasenpolymerisation}, language = {en} } @phdthesis{Tan2011, author = {Tan, Irene}, title = {Towards greener stationary phases : thermoresponsive and carbonaceous chromatographic supports}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53130}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Polymers which are sensitive towards external physical, chemical and electrical stimuli are termed as 'intelligent materials' and are widely used in medical and engineering applications. Presently, polymers which can undergo a physical change when heat is applied at a certain temperature (cloud point) in water are well-studied for this property in areas of separation chemistry, gene and drug delivery and as surface modifiers. One example of such a polymer is the poly (N-isopropylacrylamide) PNIPAAM, where it is dissolved well in water below 32 oC, while by increasing the temperature further leads to its precipitation. In this work, an alternative polymer poly (2-(2-methoxy ethoxy)ethyl methacrylate-co- oligo(ethylene glycol) methacrylate) (P(MEO2MA-co-OEGMA)) is studied due to its biocompatibility and the ability to vary its cloud points in water. When a layer of temperature responsive polymer was attached to a single continuous porous piece of silica-based material known as a monolith, the thermoresponsive characteristic was transferred to the column surfaces. The hybrid material was demonstrated to act as a simple temperature 'switch' in the separation of a mixture of five steroids under water. Different analytes were observed to be separated under varying column temperatures. Furthermore, more complex biochemical compounds such as proteins were also tested for separation. The importance of this work is attributed to separation processes utilizing environmentally friendly conditions, since harsh chemical environments conventionally used to resolve biocompounds could cause their biological activities to be rendered inactive.}, language = {en} } @phdthesis{Harmanli2020, author = {Harmanli, İpek}, title = {Towards catalytic activation of nitrogen in ionic liquid/nanoporous carbon interfaces for electrochemical ammonia synthesis}, doi = {10.25932/publishup-48359}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483591}, school = {Universit{\"a}t Potsdam}, pages = {v, 126}, year = {2020}, abstract = {Ammonia is a chemical of fundamental importance for nature`s vital nitrogen cycle. It is crucial for the growth of living organisms as well as food and energy source. Traditionally, industrial ammonia production is predominated by Haber- Bosch process (HBP) which is based on direct conversion of N2 and H2 gas under high temperature and high pressure (~500oC, 150-300 bar). However, it is not the favorite route because of its thermodynamic and kinetic limitations, and the need for the energy intense production of hydrogen gas by reforming processes. All these disfavors of HBP open a target to search for an alternative technique to perform efficient ammonia synthesis via electrochemical catalytic processes, in particular via water electrolysis, using water as the hydrogen source to save the process from gas reforming. In this study, the investigation of the interface effects between imidazolium-based ionic liquids and the surface of porous carbon materials with a special interest in the nitrogen absorption capability. As the further step, the possibility to establish this interface as the catalytically active area for the electrochemical N2 reduction to NH3 has been evaluated. This particular combination has been chosen because the porous carbon materials and ionic liquids (IL) have a significant importance in many scientific fields including catalysis and electrocatalysis due to their special structural and physicochemical properties. Primarily, the effects of the confinement of ionic liquid (EmimOAc, 1-Ethyl-3-methylimidazolium acetate) into carbon pores have been investigated. The salt-templated porous carbons, which have different porosity (microporous and mesoporous) and nitrogen species, were used as model structures for the comparison of the IL confinement at different loadings. The nitrogen uptake of EmimOAc can be increased by about 10 times by the confinement in the pores of carbon materials compared to the bulk form. In addition, the most improved nitrogen absorption was observed by IL confinement in micropores and in nitrogen-doped carbon materials as a consequence of the maximized structural changes of IL. Furthermore, the possible use of such interfaces between EmimOAc and porous carbon for the catalytic activation of dinitrogen during the kinetically challenging NRR due to the limited gas absorption in the electrolyte, was examined. An electrocatalytic NRR system based on the conversion of water and nitrogen gas to ammonia at ambient operation conditions (1 bar, 25 °C) was performed in a setup under an applied electric potential with a single chamber electrochemical cell, which consists of the combination of EmimOAc electrolyte with the porous carbon-working electrode and without a traditional electrocatalyst. Under a potential of -3 V vs. SCE for 45 minutes, a NH3 production rate of 498.37 μg h-1 cm-2 and FE of 12.14\% were achieved. The experimental observations show that an electric double-layer, which serves the catalytically active area, occurs between a microporous carbon material and ions of the EmimOAc electrolyte in the presence of sufficiently high provided electric potential. Comparing with the typical NRR systems which have been reported in the literature, the presented electrochemical ammonia synthesis approach provides a significantly higher ammonia production rate with a chance to avoid the possible kinetic limitations of NRR. In terms of operating conditions, ammonia production rate and the faradic efficiency without the need for any synthetic electrocatalyst can be resulted of electrocatalytic activation of nitrogen in the double-layer formed between carbon and IL ions.}, language = {en} } @phdthesis{Justynska2005, author = {Justynska, Justyna}, title = {Towards a library of functional block copolymers : synthesis and colloidal properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5907}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Understanding the principles of self-organisation exhibited by block copolymers requires the combination of synthetic and physicochemical knowledge. The ability to synthesise block copolymers with desired architecture facilitates the ability to manipulate their aggregation behaviour, thus providing the key to nanotechnology. Apart from relative block volumes, the size and morphology of the produced nanostructures is controlled by the effective incompatibility between the different blocks. Since polymerisation techniques allowing for the synthesis of well-defined block copolymers are restricted to a limited number of monomers, the ability to tune the incompatibility is very limited. Nevertheless, Polymer Analogue Reactions can offer another possibility for the production of functional block copolymers by chemical modifications of well-defined polymer precursors. Therefore, by applying appropriate modification methods both volume fractions and incompatibility, can be adjusted. Moreover, copolymers with introduced functional units allow utilization of the concept of molecular recognition in the world of synthetic polymers. The present work describes a modular synthetic approach towards functional block copolymers. Radical addition of functional mercaptanes was employed for the introduction of diverse functional groups to polybutadiene-containing block copolymers. Various modifications of 1,2-polybutadiene-poly(ethylene oxide) block copolymer precursors are described in detail. Furthermore, extension of the concept to 1,2-polybutadiene-polystyrene block copolymers is demonstrated. Further investigations involved the self-organisation of the modified block copolymers. Formed aggregates in aqueous solutions of block copolymers with introduced carboxylic acid, amine and hydroxyl groups as well as fluorinated chains were characterised. Study of the aggregation behaviour allowed general conclusions to be drawn regarding the influence of the introduced groups on the self-organisation of the modified copolymers. Finally, possibilities for the formation of complexes, based on electrostatic or hydrogen-bonding interactions in mixtures of block copolymers bearing mutually interacting functional groups, were investigated.}, subject = {Blockcopolymere}, language = {en} } @phdthesis{Lee2018, author = {Lee, Hui-Chun}, title = {Toward ultimate control of polymerization and catalytic property}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414973}, school = {Universit{\"a}t Potsdam}, pages = {vii, iii, 150}, year = {2018}, abstract = {Reversible-deactivation radical polymerization (RDRP) is without any doubt one of the most prevalent and powerful strategies for polymer synthesis, by which well-defined living polymers with targeted molecular weight (MW), low molar dispersity (Ɖ) and diverse morphologies can be prepared in a controlled fashion. Atom transfer radical polymerization (ATRP) as one of the most extensive studied types of RDRP has been particularly emphasized due to the high accessibility to hybrid materials, multifunctional copolymers and diverse end group functionalities via commercially available precursors. However, due to catalyst-induced side reactions and chain-chain coupling termination in bulk environment, synthesis of high MW polymers with uniform chain length (low Ɖ) and highly-preserved chain-end fidelity is usually challenging. Besides, owing to the inherited radical nature, the control of microstructure, namely tacticity control, is another laborious task. Considering the applied catalysts, the utilization of large amounts of non-reusable transition metal ions which lead to cumbersome purification process, product contamination and complicated reaction procedures all delimit the scope ATRP techniques. Metal-organic frameworks (MOFs) are an emerging type of porous materials combing the properties of both organic polymers and inorganic crystals, characterized with well-defined crystalline framework, high specific surface area, tunable porous structure and versatile nanochannel functionalities. These promising properties of MOFs have thoroughly revolutionized academic research and applications in tremendous aspects, including gas processing, sensing, photoluminescence, catalysis and compartmentalized polymerization. Through functionalization, the microenvironment of MOF nanochannel can be precisely devised and tailored with specified functional groups for individual host-guest interactions. Furthermore, properties of high transition metal density, accessible catalytic sites and crystalline particles all indicate MOFs as prominent heterogeneous catalysts which open a new avenue towards unprecedented catalytic performance. Although beneficial properties in catalysis, high agglomeration and poor dispersibility restrain the potential catalytic capacity to certain degree. Due to thriving development of MOF sciences, fundamental polymer science is undergoing a significant transformation, and the advanced polymerization strategy can eventually refine the intrinsic drawbacks of MOF solids reversely. Therefore, in the present thesis, a combination of low-dimensional polymers with crystalline MOFs is demonstrated as a robust and comprehensive approach to gain the bilateral advantages from polymers (flexibility, dispersibility) and MOFs (stability, crystallinity). The utilization of MOFs for in-situ polymerizations and catalytic purposes can be realized to synthesize intriguing polymers in a facile and universal process to expand the applicability of conventional ATRP methodology. On the other hand, through the formation of MOF/polymer composites by surface functionalization, the MOF particles with environment-adjustable dispersibility and high catalytic property can be as-prepared. In the present thesis, an approach via combination of confined porous textures from MOFs and controlled radical polymerization is proposed to advance synthetic polymer chemistry. Zn2(bdc)2(dabco) (Znbdc) and the initiator-functionalized Zn MOFs, ZnBrbdc, are utilized as a reaction environment for in-situ polymerization of various size-dependent methacrylate monomers (i.e. methyl, ethyl, benzyl and isobornyl methacrylate) through (surface-initiated) activators regenerated by electron transfer (ARGET/SI-ARGET) ATRP, resulting in polymers with control over dispersity, end functionalities and tacticity with respect to distinct molecular size. While the functionalized MOFs are applied, due to the strengthened compartmentalization effect, the accommodated polymers with molecular weight up to 392,000 can be achieved. Moreover, a significant improvement in end-group fidelity and stereocontrol can be observed. The results highlight a combination of MOFs and ATRP is a promising and universal methodology to synthesize versatile well-defined polymers with high molecular weight, increment in isotactic trial and the preserved chain-end functionality. More than being a host only, MOFs can act as heterogeneous catalysts for metal-catalyzed polymerizations. A Cu(II)-based MOF, Cu2(bdc)2(dabco), is demonstrated as a heterogeneous, universal catalyst for both thermal or visible light-triggered ARGET ATRP with expanded monomer range. The accessible catalytic metal sites enable the Cu(II) MOF to polymerize various monomers, including benzyl methacrylate (BzMA), styrene, methyl methacrylate (MMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) in the fashion of ARGET ATRP. Furthermore, due to the robust frameworks, surpassing the conventional homogeneous catalyst, the Cu(II) MOF can tolerate strongly coordinating monomers and polymerize challenging monomers (i.e. 4-vinyl pyridine, 2-vinyl pyridine and isoprene), in a well-controlled fashion. Therefore, a synthetic procedure can be significantly simplified, and catalyst-resulted chelation can be avoided as well. Like other heterogeneous catalysts, the Cu(II) MOF catalytic complexes can be easily collected by centrifugation and recycled for an arbitrary amount of times. The Cu(II) MOF, composed of photostimulable metal sites, is further used to catalyze controlled photopolymerization under visible light and requires no external photoinitiator, dye sensitizer or ligand. A simple light trigger allows the photoreduction of Cu(II) to the active Cu(I) state, enabling controlled polymerization in the form of ARGET ATRP. More than polymerization application, the synergic effect between MOF frameworks and incorporated nucleophilic monomers/molecules is also observed, where the formation of associating complexes is able to adjust the photochemical and electrochemical properties of the Cu(II) MOF, altering the band gap and light harvesting behavior. Owing to the tunable photoabsorption property resulting from the coordinating guests, photoinduced Reversible-deactivation radical polymerization (PRDRP) can be achieved to further simplify and fasten the polymerization. More than the adjustable photoabsorption ability, the synergistic strategy via a combination of controlled/living polymerization technique and crystalline MOFs can be again evidenced as demonstrated in the MOF-based heterogeneous catalysts with enhanced dispersibility in solution. Through introducing hollow pollen pivots with surface immobilized environment-responsive polymer, PDMAEMA, highly dispersed MOF nanocrystals can be prepared after associating on polymer brushes via the intrinsic amine functionality in each DMAEMA monomer. Intriguingly, the pollen-PDMAEMA composite can serve as a "smart" anchor to trap nanoMOF particles with improved dispersibility, and thus to significantly enhance liquid-phase photocatalytic performance. Furthermore, the catalytic activity can be switched on and off via stimulable coil-to-globule transition of the PDMAEMA chains exposing or burying MOF catalytic sites, respectively.}, language = {en} } @phdthesis{LopezdeGuerenu2020, author = {L{\´o}pez de Guere{\~n}u, Anna}, title = {Tm3+-doped NaYF4 nanoparticles}, doi = {10.25932/publishup-47559}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475593}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2020}, abstract = {Lately, the integration of upconverting nanoparticles (UCNP) in industrial, biomedical and scientific applications has been increasingly accelerating, owing to the exceptional photophysical properties that UCNP offer. Some of the most promising applications lie in the field of medicine and bioimaging due to such advantages as, among others, deeper tissue penetration, reduced optical background, possibility for multicolor imaging, and lower toxicity, compared to many known luminophores. However, some questions regarding not only the fundamental photophysical processes, but also the interaction of the UCNP with other luminescent reporters frequently used for bioimaging and the interaction with biological media remain unanswered. These issues were the primary motivation for the presented work. This PhD thesis investigated several aspects of various properties and possibilities for bioapplications of Yb3+,Tm3+-doped NaYF4 upconverting nanoparticles. First, the effect of Gd3+ doping on the structure and upconverting behaviour of the nanocrystals was assessed. The ageing process of the UCNP in cyclohexane was studied over 24 months on the samples with different Gd3+ doping concentrations. Structural information was gathered by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and discussed in relation to spectroscopic results, obtained through multiparameter upconversion luminescence studies at various temperatures (from 4 K to 295 K). Time-resolved and steady-state emission spectra recorded over this ample temperature range allowed for a deeper understanding of photophysical processes and their dependence on structural changes of UCNP. A new protocol using a commercially available high boiling solvent allowed for faster and more controlled production of very small and homogeneous UCNP with better photophysical properties, and the advantages of a passivating NaYF4 shell were shown. F{\"o}rster resonance energy transfer (FRET) between four different species of NaYF4: Yb3+, Tm3+ UCNP (synthesized using the improved protocol) and a small organic dye was studied. The influence of UCNP composition and the proximity of Tm3+ ions (donors in the process of FRET) to acceptor dye molecules have been assessed. The brightest upconversion luminescence was observed in the UCNP with a protective inert shell. UCNP with Tm3+ ions only in the shell were the least bright, but showed the most efficient energy transfer. In the final part, two surface modification strategies were applied to make UCNP soluble in water, which simultaneously allowed for linking them via a non-toxic copper-free click reaction to the liposomes, which served as models for further cell experiments. The results were assessed on a confocal microscope system, which was made possible by lesser known downshifting properties of Yb3+, Tm3+-doped UCNP. Preliminary antibody-staining tests using two primary and one dye-labelled secondary antibodies were performed on MDCK-II cells.}, language = {en} } @phdthesis{Stoeckle2010, author = {St{\"o}ckle, Silke}, title = {Thin liquid films with nanoparticles and rod-like ions as models for nanofluidics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46370}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {With the rise of nanotechnology in the last decade, nanofluidics has been established as a research field and gained increased interest in science and industry. Natural aqueous nanofluidic systems are very complex, there is often a predominance of liquid interfaces or the fluid contains charged or differently shaped colloids. The effects, promoted by these additives, are far from being completely understood and interesting questions arise with regards to the confinement of such complex fluidic systems. A systematic study of nanofluidic processes requires designing suitable experimental model nano - channels with required characteristics. The present work employed thin liquid films (TLFs) as experimental models. They have proven to be useful experimental tools because of their simple geometry, reproducible preparation, and controllable liquid interfaces. The thickness of the channels can be adjusted easily by the concentration of electrolyte in the film forming solution. This way, channel dimensions from 5 - 100 nm are possible, a high flexibility for an experimental system. TLFs have liquid IFs of different charge and properties and they offer the possibility to confine differently shaped ions and molecules to very small spaces, or to subject them to controlled forces. This makes the foam films a unique "device" available to obtain information about fluidic systems in nanometer dimensions. The main goal of this thesis was to study nanofluidic processes using TLFs as models, or tools, and to subtract information about natural systems plus deepen the understanding on physical chemical conditions. The presented work showed that foam films can be used as experimental models to understand the behavior of liquids in nano - sized confinement. In the first part of the thesis, we studied the process of thinning of thin liquid films stabilized with the non - ionic surfactant n - dodecyl - β - maltoside (β - C₁₂G₂) with primary interest in interfacial diffusion processes during the thinning process dependent on surfactant concentration 64. The surfactant concentration in the film forming solutions was varied at constant electrolyte (NaCl) concentration. The velocity of thinning was analyzed combining previously developed theoretical approaches. Qualitative information about the mobility of the surfactant molecules at the film surfaces was obtained. We found that above a certain limiting surfactant concentration the film surfaces were completely immobile and they behaved as non - deformable, which decelerated the thinning process. This follows the predictions for Reynolds flow of liquid between two non - deformable disks. In the second part of the thesis, we designed a TLF nanofluidic system containing rod - like multivalent ions and compared this system to films containing monovalent ions. We presented first results which recognized for the first time the existence of an additional attractive force in the foam films based on the electrostatic interaction between rod - like ions and oppositely charged surfaces. We may speculate that this is an ion bridging component of the disjoining pressure. The results show that for films prepared in presence of spermidine the transformation of the thicker CF to the thinnest NBF is more probable as films prepared with NaCl at similar conditions of electrostatic interaction. This effect is not a result of specific adsorption of any of the ions at the fluid surfaces and it does not lead to any changes in the equilibrium properties of the CF and NBF. Our hypothesis was proven using the trivalent ion Y3+ which does not show ion bridging. The experimental results are compared to theoretical predictions and a quantitative agreement on the system's energy gain for the change from CF to NBF could be obtained. In the third part of the work, the behavior of nanoparticles in confinement was investigated with respect to their impact on the fluid flow velocity. The particles altered the flow velocity by an unexpected high amount, so that the resulting changes in the dynamic viscosity could not be explained by a realistic change of the fluid viscosity. Only aggregation, flocculation and plug formation can explain the experimental results. The particle systems in the presented thesis had a great impact on the film interfaces due to the stabilizer molecules present in the bulk solution. Finally, the location of the particles with respect to their lateral and vertical arrangement in the film was studied with advanced reflectivity and scattering methods. Neutron Reflectometry studies were performed to investigate the location of nanoparticles in the TLF perpendicular to the IF. For the first time, we study TLFs using grazing incidence small angle X - ray scattering (GISAXS), which is a technique sensitive to the lateral arrangement of particles in confined volumes. This work provides preliminary data on a lateral ordering of particles in the film.}, language = {en} } @phdthesis{Henschel2023, author = {Henschel, Cristiane}, title = {Thermoresponsive polymers with co-nonsolvency behavior}, doi = {10.25932/publishup-57716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577161}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 260}, year = {2023}, abstract = {Despite the popularity of thermoresponsive polymers, much is still unknown about their behavior, how it is triggered, and what factors influence it, hindering the full exploitation of their potential. One particularly puzzling phenomenon is called co-nonsolvency, in which a polymer is soluble in two individual solvents, but counter-intuitively becomes insoluble in mixtures of both. Despite the innumerous potential applications of such systems, including actuators, viscosity regulators and as carrier structures, this field has not yet been extensively studied apart from the classical example of poly(N isopropyl acrylamide) (PNIPAM) in mixtures of water and methanol. Therefore, this thesis focuses on evaluating how changes in the chemical structure of the polymers impact the thermoresponsive, aggregation and co-nonsolvency behaviors of both homopolymers and amphiphilic block copolymers. Within this scope, both the synthesis of the polymers and their characterization in solution is investigated. Homopolymers were synthesized by conventional free radical polymerization, whereas block copolymers were synthesized by consecutive reversible addition fragmentation chain transfer (RAFT) polymerizations. The synthesis of the monomers N isopropyl methacrylamide (NIPMAM) and N vinyl isobutyramide (NVIBAM), as well as a few chain transfer agents is also covered. Through turbidimetry measurements, the thermoresponsive and co-nonsolvency behavior of PNIPMAM and PNVIBAM homopolymers is then compared to the well-known PNIPAM, in aqueous solutions with 9 different organic co-solvents. Additionally, the effects of end-groups, molar mass, and concentration are investigated. Despite the similarity of their chemical structures, the 3 homopolymers show significant differences in transition temperatures and some divergences in their co-nonsolvency behavior. More complex systems are also evaluated, namely amphiphilic di- and triblock copolymers of PNIPAM and PNIPMAM with polystyrene and poly(methyl methacrylate) hydrophobic blocks. Dynamic light scattering is used to evaluate their aggregation behavior in aqueous and mixed aqueous solutions, and how it is affected by the chemical structure of the blocks, the chain architecture, presence of cosolvents and polymer concentration. The results obtained shed light into the thermoresponsive, co-nonsolvency and aggregation behavior of these polymers in solution, providing valuable information for the design of systems with a desired aggregation behavior, and that generate targeted responses to temperature and solvent mixture changes.}, language = {en} } @phdthesis{Nizardo2018, author = {Nizardo, Noverra Mardhatillah}, title = {Thermoresponsive block copolymers with UCST-behavior aimed at biomedical environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412217}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2018}, abstract = {Thermoresponsive block copolymers of presumably highly biocompatible character exhibiting upper critical solution temperature (UCST) type phase behavior were developed. In particular, these polymers were designed to exhibit UCST-type cloud points (Tcp) in physiological saline solution (9 g/L) within the physiologically interesting window of 30-50°C. Further, their use as carrier for controlled release purposes was explored. Polyzwitterion-based block copolymers were synthesized by atom transfer radical polymerization (ATRP) via a macroinitiator approach with varied molar masses and co-monomer contents. These block copolymers can self-assemble in the amphiphilic state to form micelles, when the thermoresponsive block experiences a coil-to-globule transition upon cooling. Poly(ethylene glycol) methyl ether (mPEG) was used as the permanently hydrophilic block to stabilize the colloids formed, and polyzwitterions as the thermoresponsive block to promote the temperature-triggered assembly-disassembly of the micellear aggregates at low temperature. Three zwitterionic monomers were used for this studies, namely 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyl- oxy)ethyl)dimethylammonio)butane-1-sulfonate (SBE), and 3-((2-(methacryloyloxy)ethyl)- dimethylammonio)propane-1-sulfate) (ZPE). Their (co)polymers were characterized with respect to their molecular structure by proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Their phase behaviors in pure water as well as in physiological saline were studied by turbidimetry and dynamic light scattering (DLS). These (co)polymers are thermoresponsive with UCST-type phase behavior in aqueous solution. Their phase transition temperatures depend strongly on the molar masses and the incorporation of co-monomers: phase transition temperatures increased with increasing molar masses and content of poorly water-soluble co-monomer. In addition, the presence of salt influenced the phase transition dramatically. The phase transition temperature decreased with increasing salt content in the solution. While the PSPE homopolymers show a phase transition only in pure water, the PZPE homopolymers are able to exhibit a phase transition only in high salinity, as in physiological saline. Although both polyzwitterions have similar chemical structures that differ only in the anionic group (sulfonate group in SPE and sulfate group in ZPE), the water solubility is very different. Therefore, the phase transition temperatures of targeted block copolymers were modulated by using statistical copolymer of SPE and ZPE as thermoresponsive block, and varying the ratio of SPE to ZPE. Indeed, the statistical copolymers of P(SPE-co-ZPE) show phase transitions both in pure water as well as in physiological saline. Surprisingly, it was found that mPEG-b-PSBE block copolymer can display "schizophrenic" behavior in pure water, with the UCST-type cloud point occurring at lower temperature than the LCST-type one. The block copolymer, which satisfied best the boundary conditions, is block copolymer mPEG114-b-P(SPE43-co-ZPE39) with a cloud point of 45°C in physiological saline. Therefore, it was chosen for solubilization studies of several solvatochromic dyes as models of active agents, using the thermoresponsive block copolymer as "smart" carrier. The uptake and release of the dyes were explored by UV-Vis and fluorescence spectroscopy, following the shift of the wavelength of the absorbance or emission maxima at low and high temperature. These are representative for the loaded and released state, respectively. However, no UCST-transition triggered uptake and release of these dyes could be observed. Possibly, the poor affinity of the polybetaines to the dyes in aqueous environtments may be related to the widely reported antifouling properties of zwitterionic polymers.}, language = {en} } @phdthesis{Johann2001, author = {Johann, Robert}, title = {Thermodynamic, morphological and structural properties of dissociated fatty acid monolayers at the air-water interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000050}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Untersuchungen an Monoschichten amphiphiler Lipide auf w{\"a}ssriger L{\"o}sung sind in der Grenzfl{\"a}chenforschung von grundlegender Bedeutung. Aufgrund der Anwendbarkeit zahlreicher analytischer Methoden sind schwimmende unl{\"o}sliche Monoschichten als Modellsysteme sehr geeignet, um Ordnung und Strukturbildung sowie den Transport von Materie in zwei Dimensionen oder die Wechselwirkung von Molek{\"u}len an der Grenzfl{\"a}che mit Teilchen in L{\"o}sung (Stichwort \“molekulare Erkennung\”) zu studieren. Aus dem Verhalten von Monoschichten lassen sich z. B. R{\"u}ckschl{\"u}sse ziehen auf die Eigenschaften von Lipidschichten auf festen Substraten oder in biologischen Membranen. Diese Arbeit befasst sich mit spezifischen und fundamentalen Wechselwirkungen in Monoschichten sowohl auf molekularer als auch auf mikroskopischer Ebene und deren Beziehung zu Gitterstruktur, Aussehen und thermodynamischem Verhalten von Monoschichten an der Wasser/Luft Grenzfl{\"a}che. Als Modellsystem werden haupts{\"a}chlich Monoschichten langkettiger Fetts{\"a}uren verwendet, da in ihnen die molekularen Wechselwirkungen durch {\"A}nderung des Subphasen-pH-Werts {\"u}ber den Dissoziationsgrad gezielt und schrittweise ver{\"a}ndert werden k{\"o}nnen. Ausser {\"u}ber die Subphasenzusammensetzung werden die molekularen Wechselwirkungen auch {\"u}ber die Temperatur und die Monoschichtzusammensetzung systematisch variiert. Mit Hilfe von Isothermen- und Oberfl{\"a}chenpotentialmessungen, Brewsterwinkel-Mikroskopie, R{\"o}ntgenbeugung unter streifendem Einfall und polarisationsmodulierter Infrarot-Reflexions-Absorptions-Spektroskopie wird die {\"A}nderung der Monoschichteigenschaften als Funktion eines {\"a}usseren Parametern analysiert. Dabei werden aus den R{\"o}ntgenbeugungsdaten quantitative Masse f{\"u}r die molekularen Wechselwirkungen und f{\"u}r die Kettenkonformationsordnung in Monoschichten abgeleitet. Zu den interessantesten Ergebnissen dieser Arbeit z{\"a}hlen die Aufkl{\"a}rung des Ursprungs von regelm{\"a}ssigen polygonalen und dendritischen Dom{\"a}nenformen, die vielf{\"a}ltige Wirkung von Cholesterin auf die Molek{\"u}lpackung und Gitterordnung langkettiger Amphiphile, sowie die Entdeckung einer abrupten {\"A}nderung in den Kopfgruppenbindungswechselwirkungen, der Kettenkonformationsordnung und des Phasen{\"u}bergangsdrucks zwischen geneigten Monoschichtphasen in Fetts{\"a}uremonoschichten nahe pH 9. Zur Deutung des letzten Punkts wird ein Modell f{\"u}r die Kopfgruppenbindungsstruktur von Fetts{\"a}uremonoschichten als Funktion des pH-Werts entwickelt.}, subject = {Wasseroberfl{\"a}che}, language = {en} } @phdthesis{Muzdalo2017, author = {Muzdalo, Anja}, title = {Thermal cis-trans isomerization of azobenzene studied by path sampling and QM/MM stochastic dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-405814}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2017}, abstract = {Azobenzene-based molecular photoswitches have extensively been applied to biological systems, involving photo-control of peptides, lipids and nucleic acids. The isomerization between the stable trans and the metastable cis state of the azo moieties leads to pronounced changes in shape and other physico-chemical properties of the molecules into which they are incorporated. Fast switching can be induced via transitions to excited electronic states and fine-tuned by a large number of different substituents at the phenyl rings. But a rational design of tailor-made azo groups also requires control of their stability in the dark, the half-lifetime of the cis isomer. In computational chemistry, thermally activated barrier crossing on the ground state Born-Oppenheimer surface can efficiently be estimated with Eyring's transition state theory (TST) approach; the growing complexity of the azo moiety and a rather heterogeneous environment, however, may render some of the underlying simplifying assumptions problematic. In this dissertation, a computational approach is established to remove two restrictions at once: the environment is modeled explicitly by employing a quantum mechanical/molecular mechanics (QM/MM) description; and the isomerization process is tracked by analyzing complete dynamical pathways between stable states. The suitability of this description is validated by using two test systems, pure azo benzene and a derivative with electron donating and electron withdrawing substituents ("push-pull" azobenzene). Each system is studied in the gas phase, in toluene and in polar DMSO solvent. The azo molecules are treated at the QM level using a very recent, semi-empirical approximation to density functional theory (density functional tight binding approximation). Reactive pathways are sampled by implementing a version of the so-called transition path sampling method (TPS), without introducing any bias into the system dynamics. By analyzing ensembles of reactive trajectories, the change in isomerization pathway from linear inversion to rotation in going from apolar to polar solvent, predicted by the TST approach, could be verified for the push-pull derivative. At the same time, the mere presence of explicit solvation is seen to broaden the distribution of isomerization pathways, an effect TST cannot account for. Using likelihood maximization based on the TPS shooting history, an improved reaction coordinate was identified as a sine-cosine combination of the central bend angles and the rotation dihedral, r (ω,α,α′). The computational van't Hoff analysis for the activation entropies was performed to gain further insight into the differential role of solvent for the case of the unsubstituted and the push-pull azobenzene. In agreement with the experiment, it yielded positive activation entropies for azobenzene in the DMSO solvent while negative for the push-pull derivative, reflecting the induced ordering of solvent around the more dipolar transition state associated to the latter compound. Also, the dynamically corrected rate constants were evaluated using the reactive flux approach where an increase comparable to the experimental one was observed for a high polarity medium for both azobenzene derivatives.}, language = {en} }