@article{PlatzWeckmannPeketal.2022, author = {Platz, Anna and Weckmann, Ute and Pek, Josef and Kovacikova, Svetlana and Klanica, Radek and Mair, Johannes and Aleid, Basel}, title = {3D imaging of the subsurface electrical resistivity structure in West Bohemia/Upper Palatinate covering mofettes and quaternary volcanic structures by using magnetotellurics}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {833}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2022.229353}, pages = {20}, year = {2022}, abstract = {The region of West Bohemia and Upper Palatinate belongs to the West Bohemian Massif. The study area is situated at the junction of three different Variscan tectonic units and hosts the ENE-WSW trending Ohre Rift as well as many different fault systems. The entire region is characterized by ongoing magmatic processes in the intra-continental lithospheric mantle expressed by a series of phenomena, including e.g. the occurrence of repeated earthquake swarms and massive degassing of mantle derived CO2 in form of mineral springs and mofettes. Ongoing active tectonics is mainly manifested by Cenozoic volcanism represented by different Quaternary volcanic structures. All these phenomena make the Ohre Rift a unique target area for European intra-continental geo-scientific research. With magnetotelluric (MT) measurements we image the subsurface distribution of the electrical resistivity and map possible fluid pathways. Two-dimensional (2D) inversion results by Munoz et al. (2018) reveal a conductive channel in the vicinity of the earthquake swarm region that extends from the lower crust to the surface forming a pathway for fluids into the region of the mofettes. A second conductive channel is present in the south of their model; however, their 2D inversions allow ambiguous interpretations of this feature. Therefore, we conducted a large 3D MT field experiment extending the study area towards the south. The 3D inversion result matches well with the known geology imaging different fluid/magma reservoirs at crust-mantle depth and mapping possible fluid pathways from the reservoirs to the surface feeding known mofettes and spas. A comparison of 3D and 2D inversion results suggests that the 2D inversion results are considerably characterized by 3D and off-profile structures. In this context, the new results advocate for the swarm earthquakes being located in the resistive host rock surrounding the conductive channels; a finding in line with observations e.g. at the San Andreas Fault, California.}, language = {en} } @article{TuerkerCottonPilzetal.2022, author = {T{\"u}rker, Elif and Cotton, Fabrice and Pilz, Marco and Weatherill, Graeme}, title = {Analysis of the 2019 Mw 5.8 Silivri earthquake ground motions}, series = {Seismological research letters}, volume = {93}, journal = {Seismological research letters}, number = {2A}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210168}, pages = {693 -- 705}, year = {2022}, abstract = {The main Marmara fault (MMF) extends for 150 km through the Sea of Marmara and forms the only portion of the North Anatolian fault zone that has not ruptured in a large event (Mw >7) for the last 250 yr. Accordingly, this portion is potentially a major source contributing to the seismic hazard of the Istanbul region. On 26 September 2019, a sequence of moderate-sized events started along the MMF only 20 km south of Istanbul and were widely felt by the population. The largest three events, 26 September Mw 5.8 (10:59 UTC), 26 September 2019 Mw 4.1 (11:26 UTC), and 20 January 2020 Mw 4.7 were recorded by numerous strong-motion seismic stations and the resulting ground motions were compared to the predicted means resulting from a set of the most recent ground-motion prediction equations (GMPEs). The estimated residuals were used to investigate the spatial variation of ground motion across the Marmara region. Our results show a strong azimuthal trend in ground-motion residuals, which might indicate systematically repeating directivity effects toward the eastern Marmara region.}, language = {en} } @article{FischerHrubcovaDahmetal.2022, author = {Fischer, Tom{\´a}š and Hrubcova, Pavla and Dahm, Torsten and Woith, Heiko and Vylita, Tom{\´a}š and Ohrnberger, Matthias and Vlček, Josef and Horalek, Josef and Dedecek, Petr and Zimmer, Martin and Lipus, Martin P. and Pierdominici, Simona and Kallmeyer, Jens and Kr{\"u}ger, Frank and Hannemann, Katrin and Korn, Michael and Kaempf, Horst and Reinsch, Thomas and Klicpera, Jakub and Vollmer, Daniel and Daskalopoulou, Kyriaki}, title = {ICDP drilling of the Eger Rift observatory}, series = {Scientific drilling : reports on deep earth sampling and monitoring}, volume = {31}, journal = {Scientific drilling : reports on deep earth sampling and monitoring}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-31-31-2022}, pages = {31 -- 49}, year = {2022}, abstract = {The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Nov{\´y} Kostel seismogenic zone, borehole F3 in the Hartoušov mofette field and borehole S4 in the newly discovered Bažina maar near Lib{\´a}. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartoušov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity.}, language = {en} } @article{SpallanzaniKogaCichyetal.2022, author = {Spallanzani, Roberta and Koga, Kenneth T. and Cichy, Sarah B. and Wiedenbeck, Michael and Schmidt, Burkhard C. and Oelze, Marcus and Wilke, Max}, title = {Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts}, series = {Contributions to mineralogy and petrology}, volume = {177}, journal = {Contributions to mineralogy and petrology}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-022-01937-2}, pages = {17}, year = {2022}, abstract = {Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt\% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700-1250 degrees C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 +/- 4 kJ/mol and 152 +/- 15 kJ/mol with pre-exponential factors of 1.53 x 10(-7) m(2)/s and 3.80 x 10(-8) m(2)/s, respectively. Lithium isotopic fractionation during diffusion gave beta values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates.}, language = {en} } @article{IskenVasyuraBathkeDahmetal.2022, author = {Isken, Marius Paul and Vasyura-Bathke, Hannes and Dahm, Torsten and Heimann, Sebastian}, title = {De-noising distributed acoustic sensing data using an adaptive frequency-wavenumber filter}, series = {Geophysical journal international}, volume = {231}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggac229}, pages = {944 -- 949}, year = {2022}, abstract = {Data recorded by distributed acoustic sensing (DAS) along an optical fibre sample the spatial and temporal properties of seismic wavefields at high spatial density. Often leading to massive amount of data when collected for seismic monitoring along many kilometre long cables. The spatially coherent signals from weak seismic arrivals within the data are often obscured by incoherent noise. We present a flexible and computationally efficient filtering technique, which makes use of the dense spatial and temporal sampling of the data and that can handle the large amount of data. The presented adaptive frequency-wavenumber filter suppresses the incoherent seismic noise while amplifying the coherent wavefield. We analyse the response of the filter in time and spectral domain, and we demonstrate its performance on a noisy data set that was recorded in a vertical borehole observatory showing active and passive seismic phase arrivals. Lastly, we present a performant open-source software implementation enabling real-time filtering of large DAS data sets.}, language = {en} } @article{KuehnHainzlDahmetal.2022, author = {K{\"u}hn, Daniela and Hainzl, Sebastian and Dahm, Torsten and Richter, Gudrun and Vera Rodriguez, Ismael}, title = {A review of source models to further the understanding of the seismicity of the Groningen field}, series = {Netherlands journal of geosciences : NJG}, volume = {101}, journal = {Netherlands journal of geosciences : NJG}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0016-7746}, doi = {10.1017/njg.2022.7}, pages = {12}, year = {2022}, abstract = {The occurrence of felt earthquakes due to gas production in Groningen has initiated numerous studies and model attempts to understand and quantify induced seismicity in this region. The whole bandwidth of available models spans the range from fully deterministic models to purely empirical and stochastic models. In this article, we summarise the most important model approaches, describing their main achievements and limitations. In addition, we discuss remaining open questions and potential future directions of development.}, language = {en} } @article{FischerHrubcovaDahmetal.2022, author = {Fischer, Tomas and Hrubcova, Pavla and Dahm, Torsten and Woith, Heiko and Vylita, Tomas and Ohrnberger, Matthias and Vlcek, Josef and Horalek, Josef and Dedecek, Petr and Zimmer, Martin and Lipus, Martin P. and Pierdominici, Simona and Kallmeyer, Jens and Kr{\"u}ger, Frank and Hannemann, Katrin and Korn, Michael and K{\"a}mpf, Horst and Reinsch, Thomas and Klicpera, Jakub and Vollmer, Daniel and Daskalopoulou, Kyriaki}, title = {ICDP drilling of the Eger Rift observatory}, series = {Scientific Drilling}, volume = {31}, journal = {Scientific Drilling}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1816-8957}, doi = {10.5194/sd-31-31-2022}, pages = {31 -- 49}, year = {2022}, abstract = {The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Novy Kostel seismogenic zone, borehole F3 in the Hartousov mofette field and borehole S4 in the newly discovered Bazina maar near Liba. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartousov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity.}, language = {en} } @article{NievasPilzPrehnetal.2022, author = {Nievas, Cecilia and Pilz, Marco and Prehn, Karsten and Schorlemmer, Danijel and Weatherill, Graeme and Cotton, Fabrice}, title = {Calculating earthquake damage building by building}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {20}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-021-01303-w}, pages = {1519 -- 1565}, year = {2022}, abstract = {The creation of building exposure models for seismic risk assessment is frequently challenging due to the lack of availability of detailed information on building structures. Different strategies have been developed in recent years to overcome this, including the use of census data, remote sensing imagery and volunteered graphic information (VGI). This paper presents the development of a building-by-building exposure model based exclusively on openly available datasets, including both VGI and census statistics, which are defined at different levels of spatial resolution and for different moments in time. The initial model stemming purely from building-level data is enriched with statistics aggregated at the neighbourhood and city level by means of a Monte Carlo simulation that enables the generation of full realisations of damage estimates when using the exposure model in the context of an earthquake scenario calculation. Though applicable to any other region of interest where analogous datasets are available, the workflow and approach followed are explained by focusing on the case of the German city of Cologne, for which a scenario earthquake is defined and the potential damage is calculated. The resulting exposure model and damage estimates are presented, and it is shown that the latter are broadly consistent with damage data from the 1978 Albstadt earthquake, notwithstanding the differences in the scenario. Through this real-world application we demonstrate the potential of VGI and open data to be used for exposure modelling for natural risk assessment, when combined with suitable knowledge on building fragility and accounting for the inherent uncertainties.}, language = {en} } @article{EiblRosskopfSciottoetal.2022, author = {Eibl, Eva P. S. and Rosskopf, Martina and Sciotto, Mariangela and Currenti, Gilda and Di Grazia, Giuseppe and Jousset, Philippe and Kr{\"u}ger, Frank and Weber, Michael}, title = {Performance of a rotational sensor to decipher volcano seismic signals on Etna, Italy}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {6}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {0148-0227}, doi = {10.1029/2021JB023617}, pages = {22}, year = {2022}, abstract = {Volcano-seismic signals such as long-period events and tremor are important indicators for volcanic activity and unrest. However, their wavefield is complex and characterization and location using traditional seismological instrumentation is often difficult. In 2019 we recorded the full seismic wavefield using a newly developed 3C rotational sensor co-located with a 3C traditional seismometer on Etna, Italy. We compare the performance of the rotational sensor, the seismometer and the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo (INGV-OE) seismic network with respect to the analysis of complex volcano-seismic signals. We create event catalogs for volcano-tectonic (VT) and long-period (LP) events combining a STA/LTA algorithm and cross-correlations. The event detection based on the rotational sensor is as reliable as the seismometer-based detection. The LP events are dominated by SH-type waves. Derived SH phase velocities range from 500 to 1,000 m/s for LP events and 300-400 m/s for volcanic tremor. SH-waves compose the tremor during weak volcanic activity and SH- and SV-waves during sustained strombolian activity. We derive back azimuths using (a) horizontal rotational components and (b) vertical rotation rate and transverse acceleration. The estimated back azimuths are consistent with the INGV-OE event location for (a) VT events with an epicentral distance larger than 3 km and some closer events, (b) LP events and tremor in the main crater area. Measuring the full wavefield we can reliably analyze the back azimuths, phase velocities and wavefield composition for VT, LP events and tremor in regions that are difficult to access such as volcanoes.}, language = {en} } @article{LescesenSrajBasarinetal.2022, author = {Lescesen, Igor and Sraj, Mojca and Basarin, Biljana and Pavic, Dragoslav and Mesaros, Minucer and Mudelsee, Manfred}, title = {Regional flood frequency analysis of the sava river in south-eastern Europe}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su14159282}, pages = {19}, year = {2022}, abstract = {Regional flood frequency analysis (RFFA) is a powerful method for interrogating hydrological series since it combines observational time series from several sites within a region to estimate risk-relevant statistical parameters with higher accuracy than from single-site series. Since RFFA extreme value estimates depend on the shape of the selected distribution of the data-generating stochastic process, there is need for a suitable goodness-of-distributional-fit measure in order to optimally utilize given data. Here we present a novel, least-squares-based measure to select the optimal fit from a set of five distributions, namely Generalized Extreme Value (GEV), Generalized Logistic, Gumbel, Log-Normal Type III and Log-Pearson Type III. The fit metric is applied to annual maximum discharge series from six hydrological stations along the Sava River in South-eastern Europe, spanning the years 1961 to 2020. Results reveal that (1) the Sava River basin can be assessed as hydrologically homogeneous and (2) the GEV distribution provides typically the best fit. We offer hydrological-meteorological insights into the differences among the six stations. For the period studied, almost all stations exhibit statistically insignificant trends, which renders the conclusions about flood risk as relevant for hydrological sciences and the design of regional flood protection infrastructure.}, language = {en} } @article{CarvalhoBrosinskyFoersteretal.2022, author = {Carvalho, Thayslan and Brosinsky, Arlena and Foerster, Saskia and Teixeira, Adunias and Medeiros, Pedro Henrique Augusto}, title = {Reservoir sediment characterisation by diffuse reflectance spectroscopy in a semiarid region to support sediment reuse for soil fertilization}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {22}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-022-03281-1}, pages = {2557 -- 2577}, year = {2022}, abstract = {Purpose: Soil erosion by water yields sediment to surface reservoirs, reducing their storage capacities, changing their geometry, and degrading water quality. Sediment reuse, i.e., fertilization of agricultural soils with the nutrient-enriched sediment from reservoirs, has been proposed as a recovery strategy. However, the sediment needs to meet certain criteria. In this study, we characterize sediments from the densely dammed semiarid Northeast Brazil by VNIR-SWIR spectroscopy and assess the effect of spectral resolution and spatial scale on the accuracy of N, P, K, C, electrical conductivity, and clay prediction models. Methods Sediment was collected in 10 empty reservoirs, and physical and chemical laboratory analyses as well as spectral measurements were performed. The spectra, initially measured at 1 nm spectral resolution, were resampled to 5 and 10 nm, and samples were analysed for both high and low spectral resolution at three spatial scales, namely (1) reservoir, (2) catchment, and (3) regional scale. Results Partial least square regressions performed from good to very good in the prediction of clay and electrical conductivity from reservoir (<40 km(2)) to regional (82,500 km(2)) scales. Models for C and N performed satisfactorily at the reservoir scale, but degraded to unsatisfactory at the other scales. Models for P and K were more unstable and performed from unsatisfactorily to satisfactorily at all scales. Coarsening spectral resolution by up to 10 nm only slightly degrades the models' performance, indicating the potential of characterizing sediment from spectral data captured at lower resolutions, such as by hyperspectral satellite sensors. Conclusion: By reducing the costly and time-consuming laboratory analyses, the method helps to promote the sediment reuse as a practice of soil and water conservation.}, language = {en} } @article{KabothBahrMudelsee2022, author = {Kaboth-Bahr, Stefanie and Mudelsee, Manfred}, title = {The multifaceted history of the Walker Circulation during the Plio-Pleistocene}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {286}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107529}, pages = {16}, year = {2022}, abstract = {The Walker Circulation (WC) is an east-west trending band of atmospheric circulation cells along the equator and the predominant controller of heat and moisture transport in the tropics. Its variability is closely linked to the sea-surface temperature (SST) changes across the Pacific, the Indian and the Atlantic Oceans and can have pronounced effects on the humidity regimes of the adjacent continents. In recent years, the evolution of the WC during the Plioand Pleistocene epochs has been intensely studied in the context of the effectiveness of the tropics in modulating global climate change (e.g., the intensification of Northern Hemisphere glaciation). However, the onset of the modern WC pattern as well as its global impact during the Plioand Pleistocene is controversially assessed in the literature. For its onset, previous studies have suggested dates ranging between 2.4 and 0.8 million years ago (Myr), while its argued impact ranges from crucially influencing the increase of Northern Hemisphere ice sheet growth by channelling heat and moisture from the tropics into the high latitudes to having no effect on global ice volume changes. In order to achieve a comprehensive understanding of the spatiotemporal evolution of the WC during this time frame, we statistically analysed 30 globally distributed SST records covering the low and high latitudes between 3.5 and 1.5 Myr, encompassing the Late Pliocene to Early Pleistocene. We utilized a statistical change-point regression model to determine significant change points in the SST evolution of the (sub)-tropics and high latitudes that potentially relate to changes in the WC. We find that the WC experienced a multifaceted evolution between the Late Pliocene and the Early Pleistocene with significant transitional steps at-2.7 and-2.1 Ma. Our results suggest after the Late Pliocene, a pre-modern WC set in, which was characterized by a progressively strengthened Pacific Walker Cell alongside a weakened Indian Ocean Walker Cell. This change was potentially triggered by the constriction of the Indonesian seaway, an important transmitter between the Pacific and Indian Ocean. The ensuing mode of the WC intensified until-2.1 Myr, when SST values around the global scale signalled a progressive strengthening of the Indian Walker Cell in phase with the progressive strengthening of the Pacific and Atlantic Cells. Our findings indicate that a shift from a pre-modern to a modern-like WC potentially only occurred during the mid-Pleistocene.}, language = {en} } @article{StolpmannMollenhauerMorgensternetal.2022, author = {Stolpmann, Lydia and Mollenhauer, Gesine and Morgenstern, Anne and Hammes, Jens S. and Boike, Julia and Overduin, Pier Paul and Grosse, Guido}, title = {Origin and pathways of dissolved organic carbon in a small catchment in the Lena River Delta}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.759085}, pages = {15}, year = {2022}, abstract = {The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km(2)) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (delta O-18 and delta D) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L-1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 C-14 y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km(-2) per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River.}, language = {en} } @article{YenvonSpechtLinetal.2022, author = {Yen, Ming-Hsuan and von Specht, Sebastian and Lin, Yen-Yu and Cotton, Fabrice and Ma, Kuo-Fong}, title = {Within- and between-event variabilities of strong-velocity pulses of moderate earthquakes within dense seismic arrays}, series = {Bulletin of the Seismological Society of America}, volume = {112}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120200376}, pages = {361 -- 380}, year = {2022}, abstract = {Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (M-w 6-7) and characterize ground- motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the freq uency-wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.}, language = {en} } @article{WolfHuismansBraunetal.2022, author = {Wolf, Sebastian G. and Huismans, Ritske S. and Braun, Jean and Yuan, Xiaoping}, title = {Topography of mountain belts controlled by rheology and surface processes}, series = {Nature : the international weekly journal of science}, volume = {606}, journal = {Nature : the international weekly journal of science}, number = {7914}, publisher = {Nature portfolio}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-022-04700-6}, pages = {516 -- 521}, year = {2022}, abstract = {It is widely recognized that collisional mountain belt topography is generated by crustal thickening and lowered by river bedrock erosion, linking climate and tectonics(1-4). However, whether surface processes or lithospheric strength control mountain belt height, shape and longevity remains uncertain. Additionally, how to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years remains enigmatic. Here we investigate mountain belt growth and decay using a new coupled surface process(5,6) and mantle-scale tectonic model(7). End-member models and the new non-dimensional Beaumont number, Bm, quantify how surface processes and tectonics control the topographic evolution of mountain belts, and enable the definition of three end-member types of growing orogens: type 1, non-steady state, strength controlled (Bm > 0.5); type 2, flux steady state(8), strength controlled (Bm approximate to 0.4-0.5); and type 3, flux steady state, erosion controlled (Bm < 0.4). Our results indicate that tectonics dominate in Himalaya-Tibet and the Central Andes (both type 1), efficient surface processes balance high convergence rates in Taiwan (probably type 2) and surface processes dominate in the Southern Alps of New Zealand (type 3). Orogenic decay is determined by erosional efficiency and can be subdivided into two phases with variable isostatic rebound characteristics and associated timescales. The results presented here provide a unified framework explaining how surface processes and lithospheric strength control the height, shape, and longevity of mountain belts.}, language = {en} } @article{GengAndreevKruseetal.2022, author = {Geng, Rongwei and Andreev, Andrei and Kruse, Stefan and Heim, Birgit and van Geffen, Femke and Pestryakova, Luidmila and Zakharov, Evgenii and Troeva, Elena I. and Shevtsova, Iuliia and Li, Furong and Zhao, Yan and Herzschuh, Ulrike}, title = {Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for Major Taxa}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.837857}, pages = {17}, year = {2022}, abstract = {Modern pollen-vegetation-climate relationships underpin palaeovegetation and palaeoclimate reconstructions from fossil pollen records. East Siberia is an ideal area for investigating the relationships between modern pollen assemblages and near natural vegetation under cold continental climate conditions. Reliable pollen-based quantitative vegetation and climate reconstructions are still scarce due to the limited number of modern pollen datasets. Furthermore, differences in pollen representation of samples from lake sediments and soils are not well understood. Here, we present a new pollen dataset of 48 moss/soil and 24 lake surface-sediment samples collected in Chukotka and central Yakutia in East Siberia. The pollen-vegetation-climate relationships were investigated by ordination analyses. Generally, tundra and taiga vegetation types can be well distinguished in the surface pollen assemblages. Moss/soil and lake samples contain generally similar pollen assemblages as revealed by a Procrustes comparison with some exceptions. Overall, modern pollen assemblages reflect the temperature and precipitation gradients in the study areas as revealed by constrained ordination analysis. We estimate the relative pollen productivity (RPP) of major taxa and the relevant source area of pollen (RSAP) for moss/soil samples from Chukotka and central Yakutia using Extended R-Value (ERV) analysis. The RSAP of the tundra-forest transition area in Chukotka and taiga area in central Yakutia are ca. 1300 and 360 m, respectively. For Chukotka, RPPs relative to both Poaceae and Ericaceae were estimated while RPPs for central Yakutia were relative only to Ericaceae. Relative to Ericaceae (reference taxon, RPP = 1), Larix, Betula, Picea, and Pinus are overrepresented while Alnus, Cyperaceae, Poaceae, and Salix are underrepresented in the pollen spectra. Our estimates are in general agreement with previously published values and provide the basis for reliable quantitative reconstructions of East Siberian vegetation.}, language = {en} } @article{KumarGuntuAgarwaletal.2022, author = {Kumar, Satish and Guntu, Ravi Kumar and Agarwal, Ankit and Villuri, Vasant Govind Kumar and Pasupuleti, Srinivas and Kaushal, Deo Raj and Gosian, Ashwin Kumar and Bronstert, Axel}, title = {Multi-objective optimization for stormwater management by green-roofs and infiltration trenches to reduce urban flooding in central Delhi}, series = {Journal of hydrology}, volume = {606}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2022.127455}, pages = {16}, year = {2022}, abstract = {Urban surface runoff management via best management practices (BMP) and low impact development (LID) has earned significant recognition owing to positive environmental and ecological impacts. However, due to the complexity of the parameters involved, the estimation of LID efficiency in attenuating the urban surface runoff at the watershed scale is challenging. A planning analysis of employing Green Roofs and Infiltration Trenches as BMPs/LIDs practices for urban surface runoff control is presented in this study. A multi-objective optimization decision-making framework is established by coupling SWMM (Storm Water Management Model) with NSGA-II models to check the performance of BMPs/LIDs concerning the cost-benefit analysis of LID at the watershed scale. Two urbanized areas belonging to Central Delhi in India were used as case studies. The results showed that the SWMM model is useful in simulating optimization problems for managing urban surface runoff. The optimum scenarios efficiently minimized the urban runoff volume while maintaining the BMPs/LIDs implementation costs and size. With BMPs/LIDs implementation, the reduction in runoff volume increases as expenses increase initially; however, there is no noticeable reduction in flood volume after a certain threshold. Contrasted with the haphazard arrangement of BMPs/LIDs, the proposed approach demonstrates 22\%-24\% runoff reductions for the same expenditures in watershed 1 and 23\%-26\% in watershed 2. The result of the study provides insights into planning and management of the urban surface runoff control with LID practices. The proposed framework assists the hydrologists in optimum selection and placements of BMPs/LIDs practices to acquire the most extreme ecological advantages with the least expenses.}, language = {en} } @article{HuelscherSobelKallniketal.2022, author = {H{\"u}lscher, Julian and Sobel, Edward and Kallnik, Niklas and Hoffmann, J. Elis and Millar, Ian L. and Hartmann, Kai and Bernhardt, Anne}, title = {Apatites record sedimentary provenance change 4-5 myrs before clay in the Oligocene/Miocene Alpine molasse}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.914409}, pages = {16}, year = {2022}, abstract = {Extracting information about past tectonic or climatic environmental changes from sedimentary records is a key objective of provenance research. Interpreting the imprint of such changes remains challenging as signals might be altered in the sediment-routing system. We investigate the sedimentary provenance of the Oligocene/Miocene Upper Austrian Northern Alpine Foreland Basin and its response to the tectonically driven exhumation of the Tauern Window metamorphic dome (28 +/- 1 Ma) in the Eastern European Alps by using the unprecedented combination of Nd isotopic composition of bulk-rock clay-sized samples and partly previously published multi-proxy (Nd isotopic composition, trace-element geochemistry, U-Pb dating) sand-sized apatite single-grain analysis. The basin offers an excellent opportunity to investigate environmental signal propagation into the sedimentary record because comprehensive stratigraphic and seismic datasets can be combined with present research results. The bulk-rock clay-sized fraction epsilon Nd values of well-cutting samples from one well on the northern basin slope remained stable at similar to-9.7 from 27 to 19 Ma but increased after 19 Ma to similar to-9.1. In contrast, apatite single-grain distributions, which were extracted from 22 drill-core samples, changed significantly around 23.3 Ma from apatites dominantly from low-grade (