@article{MaesPerringVanhellemontetal.2018, author = {Maes, Sybryn L. and Perring, Michael P. and Vanhellemont, Margot and Depauw, Leen and Van den Bulcke, Jan and Brumelis, Guntis and Brunet, Jorg and Decocq, Guillaume and den Ouden, Jan and H{\"a}rdtle, Werner and Hedl, Radim and Heinken, Thilo and Heinrichs, Steffi and Jaroszewicz, Bogdan and Kopeck{\´y}, Martin and Malis, Frantisek and Wulf, Monika and Verheyen, Kris}, title = {Environmental drivers interactively affect individual tree growth across temperate European forests}, series = {Global change biology}, volume = {25}, journal = {Global change biology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14493}, pages = {201 -- 217}, year = {2018}, abstract = {Forecasting the growth of tree species to future environmental changes requires abetter understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to localland-use drivers such as forest management. Yet, large geographical scale studiesexamining interactive growth responses to multiple global-change drivers are relativelyscarce and rarely consider management effects. Here, we assessed the interactiveeffects of three global-change drivers (temperature, precipitation and nitrogen deposi-tion) on individual tree growth of three study species (Quercus robur/petraea, Fagus syl-vatica and Fraxinus excelsior). We sampled trees along spatial environmental gradientsacross Europe and accounted for the effects of management for Quercus. We collectedincrement cores from 267 trees distributed over 151 plots in 19 forest regions andcharacterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. Wedemonstrate that growth responds interactively to global-change drivers, with species -specific sensitivities to the combined factors. Simultaneously high levels of precipita-tion and deposition benefited Fraxinus, but negatively affected Quercus' growth, high-lighting species-specific interactive tree growth responses to combined drivers. ForFagus, a stronger growth response to higher temperatures was found when precipita-tion was also higher, illustrating the potential negative effects of drought stress underwarming for this species. Furthermore, we show that past forest management canmodulate the effects of changing temperatures on Quercus' growth; individuals in plotswith a coppicing history showed stronger growth responses to higher temperatures.Overall, our findings highlight how tree growth can be interactively determined by glo-bal-change drivers, and how these growth responses might be modulated by past for-est management. By showing future growth changes for scenarios of environmentalchange, we stress the importance of considering multiple drivers, including past man-agement and their interactions, when predicting tree growth.}, language = {en} } @article{Mielke2019, author = {Mielke, Jahel}, title = {Signals for 2 degrees C}, series = {Journal of Sustainable Finance \& Investment}, volume = {9}, journal = {Journal of Sustainable Finance \& Investment}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2043-0795}, doi = {10.1080/20430795.2018.1528809}, pages = {87 -- 115}, year = {2019}, abstract = {The targets of the Paris Agreement make it necessary to redirect finance flows towards sustainable, low-carbon infrastructures and technologies. Currently, the potential of institutional investors to help finance this transition is widely discussed. Thus, this paper takes a closer look at influence factors for green investment decisions of large European insurance companies. With a mix of qualitative and quantitative methods, the importance of policy, market and civil society signals is evaluated. In summary, respondents favor measures that promote green investment, such as feed-in tariffs or adjustments of capital charges for green assets, over ones that make carbon-intensive investments less attractive, such as the phase-out of fossil fuel subsidies or a carbon price. While investors currently see a low impact of the carbon price, they rank a substantial reform as an important signal for the future. Respondents also emphasize that policy signals have to be coherent and credible to coordinate expectations.}, language = {en} } @article{HickmannStehle2019, author = {Hickmann, Thomas and Stehle, Fee}, title = {The Embeddedness of Urban Climate Politics in Multilevel Governance}, series = {The journal of environment \& development : a review of international policy}, volume = {28}, journal = {The journal of environment \& development : a review of international policy}, number = {1}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {1070-4965}, doi = {10.1177/1070496518819121}, pages = {54 -- 77}, year = {2019}, abstract = {Numerous scholars have lately highlighted the importance of cities in the global response to climate change. However, we still have little systematic knowledge on the evolution of urban climate politics in the Global South. In particular, we lack empirical studies that examine how local climate actions arise in political-administrative systems of developing and emerging economies. Therefore, this article adopts a multilevel governance perspective to explore the climate mitigation responses of three major cities in South Africa by looking at their vertical and horizontal integration in the wider governance framework. In the absence of a coherent national climate policy, Johannesburg, Cape Town, and Durban have developed distinct climate actions within their jurisdictions. In their effort to address climate change, transnational city networks have provided considerable technical support to these cities. Yet, substantial domestic political-economic obstacles hinder the three cities to develop a more ambitious stance on climate change.}, language = {en} } @article{ChanBoranvanAsseltetal.2019, author = {Chan, Sander and Boran, Idil and van Asselt, Harro and Iacobuta, Gabriela and Niles, Navam and Rietig, Katharine and Scobie, Michelle and Bansard, Jennifer S. and Delgado Pugley, Deborah and Delina, Laurence L. and Eichhorn, Friederike and Ellinger, Paula and Enechi, Okechukwu and Hale, Thomas and Hermwille, Lukas and Hickmann, Thomas and Honegger, Matthias and Hurtado Epstein, Andrea and Theuer, Stephanie La Hoz and Mizo, Robert and Sun, Yixian and Toussaint, Patrick and Wambugu, Geoffrey}, title = {Promises and risks of nonstate action in climate and sustainability governance}, series = {Wiley interdisciplinary reviews : Climate change}, volume = {10}, journal = {Wiley interdisciplinary reviews : Climate change}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1757-7780}, doi = {10.1002/wcc.572}, pages = {8}, year = {2019}, language = {en} } @article{MarzetzSpijkermanStriebeletal.2020, author = {Marzetz, Vanessa and Spijkerman, Elly and Striebel, Maren and Wacker, Alexander}, title = {Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply}, series = {Frontiers in Environmental Science}, volume = {8}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2020.539733}, pages = {11}, year = {2020}, abstract = {In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important.}, language = {en} } @article{KahlLenhardJoshi2019, author = {Kahl, Sandra and Lenhard, Michael and Joshi, Jasmin Radha}, title = {Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris}, series = {The journal of ecology}, volume = {107}, journal = {The journal of ecology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.13133}, pages = {1918 -- 1930}, year = {2019}, abstract = {The adaptation of plants to future climatic conditions is crucial for their survival. Not surprisingly, phenotypic responses to climate change have already been observed in many plant populations. These responses may be due to evolutionary adaptive changes or phenotypic plasticity. Especially plant species with a wide geographic range are either expected to show genetic differentiation in response to differing climate conditions or to have a high phenotypic plasticity. We investigated phenotypic responses and plasticity as an estimate of the adaptive potential in the widespread species Silene vulgaris. In a greenhouse experiment, 25 European populations covering a geographic range from the Canary Islands to Sweden were exposed to three experimental precipitation and two temperature regimes mimicking a possible climate-change scenario for central Europe. We hypothesized that southern populations have a better performance under high temperature and drought conditions, as they are already adapted to a comparable environment. We found that our treatments significantly influenced the plants, but did not reveal a latitudinal difference in response to climate treatments for most plant traits. Only flower number showed a stronger plasticity in northern European populations (e.g. Swedish populations) where numbers decreased more drastically with increased temperature and decreased precipitation treatment. Synthesis. The significant treatment response in Silene vulgaris, independent of population origin - except for the number of flowers produced - suggests a high degree of universal phenotypic plasticity in this widely distributed species. This reflects the likely adaptation strategy of the species and forms the basis for a successful survival strategy during upcoming climatic changes. However, as flower number, a strongly fitness-related trait, decreased more strongly in northern populations under a climate-change scenario, there might be limits to adaptation even in this widespread, plastic species.}, language = {en} } @article{SmithBookhagen2020, author = {Smith, Taylor and Bookhagen, Bodo}, title = {Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data}, series = {Frontiers in Earth Science}, volume = {8}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2020.559175}, pages = {13}, year = {2020}, abstract = {High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987-2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987-1997, to much more positive trends across large regions of HMA during the periods 1997-2007 and 2007-2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances.}, language = {en} } @article{GrimmSeyfarthMihoubHenle2019, author = {Grimm-Seyfarth, Annegret and Mihoub, Jean-Baptiste and Henle, Klaus}, title = {Functional traits determine the different effects of prey, predators, and climatic extremes on desert reptiles}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {10}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {2150-8925}, doi = {10.1002/ecs2.2865}, pages = {17}, year = {2019}, abstract = {Terrestrial reptiles are particularly vulnerable to climate change. Their highest density and diversity can be found in hot drylands, ecosystems which demonstrate extreme climatic conditions. However, reptiles are not isolated systems but part of a large species assemblage with many trophic dependencies. While direct relations among climatic conditions, invertebrates, vegetation, or reptiles have already been explored, to our knowledge, species' responses to direct and indirect pathways of multiple climatic and biotic factors and their interactions have rarely been examined comprehensively. We investigated direct and indirect effects of climatic and biotic parameters on the individual (body condition) and population level (occupancy) of eight abundant lizard species with different functional traits in an arid Australian lizard community using a 30-yr multi-trophic monitoring study. We used structural equation modeling to disentangle single and interactive effects. We then assessed whether species could be grouped into functional groups according to their functional traits and their responses to different parameters. We found that lizard species differed strongly in how they responded to climatic and biotic factors. However, the factors to which they responded seemed to be determined by their functional traits. While responses on body condition were determined by habitat, activity time, and prey, responses on occupancy were determined by habitat specialization, body size, and longevity. Our findings highlight the importance of indirect pathways through climatic and biotic interactions, which should be included into predictive models to increase accuracy when predicting species' responses to climate change. Since one might never obtain all mechanistic pathways at the species level, we propose an approach of identifying relevant species traits that help grouping species into functional groups at different ecological levels, which could then be used for predictive modeling.}, language = {en} } @article{AyzelIzhitskiy2019, author = {Ayzel, Georgy and Izhitskiy, Alexander}, title = {Climate Change Impact Assessment on Freshwater Inflow into the Small Aral Sea}, series = {Water}, volume = {11}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11112377}, pages = {19}, year = {2019}, abstract = {During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007-2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash-Sutcliffe efficiency of 0.72 and a Kling-Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century.}, language = {en} } @article{SchwarzerJoshi2019, author = {Schwarzer, Christian and Joshi, Jasmin Radha}, title = {Ecotypic differentiation, hybridization and clonality facilitate the persistence of a cold-adapted sedge in European bogs}, series = {Biological journal of the Linnean Society : a journal of evolution}, volume = {128}, journal = {Biological journal of the Linnean Society : a journal of evolution}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0024-4066}, doi = {10.1093/biolinnean/blz141}, pages = {909 -- 925}, year = {2019}, abstract = {Recent research has shown that many cold-adapted species survived the last glacial maximum (LGM) in northern refugia. Whether this evolutionary history has had consequences for their genetic diversity and adaptive potential remains unknown. We sampled 14 populations of Carex limosa, a sedge specialized to bog ecosystems, along a latitudinal gradient from its Scandinavian core to the southern lowland range-margin in Germany. Using microsatellite and experimental common-garden data, we evaluated the impacts of global climate change along this gradient and assessed the conservation status of the southern marginal populations. Microsatellite data revealed two highly distinct genetic groups and hybrid individuals. In our common-garden experiment, the two groups showed divergent responses to increased nitrogen/phosphorus (N/P) availability, suggesting ecotypic differentiation. Each group formed genetically uniform populations at both northern and southern sampling areas. Mixed populations occurred throughout our sampling area, an area that was entirely glaciated during the LGM. The fragmented distribution implies allopatric divergence at geographically separated refugia that putatively differed in N/P availability. Molecular data and an observed low hybrid fecundity indicate the importance of clonal reproduction for hybrid populations. At the southern range-margin, however, all populations showed effects of clonality, lowered fecundity and low competitiveness, suggesting abiotic and biotic constraints to population persistence.}, language = {en} } @article{KrolJaegerBronstertetal.2006, author = {Krol, Maarten and Jaeger, Annekathrin and Bronstert, Axel and G{\"u}ntner, Andreas}, title = {Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil}, series = {Journal of hydrology}, volume = {328}, journal = {Journal of hydrology}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2005.12.021}, pages = {417 -- 431}, year = {2006}, abstract = {Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved.}, language = {en} } @article{DrewesMoreirasKorup2018, author = {Drewes, Julia and Moreiras, Stella and Korup, Oliver}, title = {Permafrost activity and atmospheric warming in the Argentinian Andes}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {323}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2018.09.005}, pages = {13 -- 24}, year = {2018}, abstract = {Rock glaciers are permafrost or glacial landforms of debris and ice that deform under the influence of gravity. Recent estimates hold that, in the semiarid Chilean Andes for example, active rock glaciers store more water than glaciers. However, little is known about how many rock glaciers might decay because of global warming and how much this decay might contribute to water and sediment release. We investigated an inventory of >6500 rock glaciers in the Argentinian Andes, spanning the climatic gradient from the Desert Andes to cold-temperate Tierra del Fuego. We used active rock glaciers as a diagnostic of permafrost, assuming that the toes mark the 0 degrees C isotherm in climate scenarios for the twenty-first century and their impact on freezing conditions near the rock glacier toes. We find that, under future worst case warming, up to 95\% of rock glaciers in the southern Desert Andes and in the Central Andes will rest in areas above 0 degrees C and that this freezing level might move up more than twice as much (similar to 500 m) as during the entire Holocene (similar to 200 m). Many active rock glaciers are already well below the current freezing level and exemplify how local controls may confound regional prognoses. A Bayesian Multifactor Analysis of Variance further shows that only in the Central Andes are the toes of active rock glaciers credibly higher than those of inactive ones. Elsewhere in the Andes, active and inactive rock glaciers occupy indistinguishable elevation bands, regardless of aspect, the formation mechanism, or shape of rock glaciers. The state of rock glacier activity predicts differences in elevations of toes to 140 m at best so that regional inference of the distribution of discontinuous permafrost from rock-glacier toes cannot be more accurate than this in the Argentinian Andes. We conclude that the Central Andes-where rock glaciers are largest, cover the most area, and have a greater density than glaciers-is likely to experience the most widespread disturbance to the thermal regime of the twenty-first century. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{MarkovicCarrizoKaercheretal.2017, author = {Markovic, Danijela and Carrizo, Savrina F. and Kaercher, Oskar and Walz, Ariane and David, Jonathan N. W.}, title = {Vulnerability of European freshwater catchments to climate change}, series = {Global change biology}, volume = {23}, journal = {Global change biology}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.13657}, pages = {3567 -- 3580}, year = {2017}, abstract = {Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25\% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.}, language = {en} } @article{WieczorekKruseEppetal.2017, author = {Wieczorek, Mareike and Kruse, Stefan and Epp, Laura Saskia and Kolmogorov, Alexei and Nikolaev, Anatoly N. and Heinrich, Ingo and Jeltsch, Florian and Pestryakova, Luidmila Agafyevna and Zibulski, Romy and Herzschuh, Ulrike}, title = {Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study}, series = {Ecology : a publication of the Ecological Society of America}, volume = {98}, journal = {Ecology : a publication of the Ecological Society of America}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.1887}, pages = {2343 -- 2355}, year = {2017}, abstract = {Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.}, language = {en} } @article{WenzLevermannAuffhammer2017, author = {Wenz, Leonie and Levermann, Anders and Auffhammer, Maximilian}, title = {North-south polarization of European electricity consumption under future warming}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {114}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1704339114}, pages = {E7910 -- E7918}, year = {2017}, abstract = {There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply sidethrough the mitigation of greenhouse gasesand from the demand sidethrough adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the worlds third-largest electricity marketthe 35 countries of Europe. We statistically estimate country-level doseresponse functions between daily peak/total electricity load and ambient temperature for the period 2006-2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common doseresponse function, which we use to compute national electricity loads for temperatures that lie outside each countrys currently observed temperature range. To this end, we impose end-of-century climate on todays European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigationin line with the Paris agreementto unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (similar to 3 to similar to 7\% for Portugal and Spain) and significant decreases in northern Europe (similar to-6 to similar to-2\% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity.}, language = {en} } @article{WenzKalkuhlSteckeletal.2016, author = {Wenz, Leonie and Kalkuhl, Matthias and Steckel, Jan Christoph and Creutzig, Felix}, title = {Teleconnected food supply shocks}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/3/035007}, pages = {10}, year = {2016}, abstract = {The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10\% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5\%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90\% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.}, language = {en} } @article{KellermannBubeckKundelaetal.2016, author = {Kellermann, Patric and Bubeck, Philip and Kundela, Guenther and Dosio, Alessandro and Thieken, Annegret}, title = {Frequency Analysis of Critical Meteorological Conditions in a Changing ClimateAssessing Future Implications for Railway Transportation in Austria}, series = {Climate : open access journal}, volume = {4}, journal = {Climate : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2225-1154}, doi = {10.3390/cli4020025}, pages = {914 -- 931}, year = {2016}, abstract = {Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite.}, language = {en} } @article{Schneider2016, author = {Schneider, Birgit}, title = {Burning worlds of cartography: a critical approach to climate cosmograms of the Anthropocene}, series = {Geo : geography and environment}, volume = {3}, journal = {Geo : geography and environment}, publisher = {Wiley}, address = {Hoboken}, issn = {2054-4049}, doi = {10.1002/geo2.27}, pages = {15}, year = {2016}, abstract = {Climate science today makes use of a variety of red globes to explore and communicate findings. These transform the iconography which informs this image: the idealised, even mythical vision of the blue, vulnerable and perfect marble is impaired by the application of the colours yellow and red. Since only predictions that employ a lot of red seem to exist, spectators are confronted with the message that the future Earth that might turn out as envisaged here is undesirable. Here intuitively powerful narrations of the end of the world may connect. By employing methods of art history and visual analysis, and building on examples from current Intergovernmental Panel on Climate Change reports and future scenario maps, this article explores how burning world images bear - intentionally or not - elements of horror and shock. My question explored here is as follows: should 'burning world' images be understood as a new and powerful cosmology?}, language = {en} } @article{GeigerFrielerLevermann2016, author = {Geiger, Tobias and Frieler, Katja and Levermann, Anders}, title = {High-income does not protect against hurricane losses}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/8/084012}, pages = {10}, year = {2016}, abstract = {Damage due to tropical cyclones accounts for more than 50\% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation's affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm's wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation.}, language = {en} } @article{DiCapuaCoumou2016, author = {Di Capua, Giorgia and Coumou, Dim}, title = {Changes in meandering of the Northern Hemisphere circulation}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/9/094028}, pages = {9}, year = {2016}, abstract = {Strong waves in the mid-latitude circulation have been linked to extreme surface weather and thus changes in waviness could have serious consequences for society. Several theories have been proposed which could alter waviness, including tropical sea surface temperature anomalies or rapid climate change in the Arctic. However, so far it remains unclear whether any changes in waviness have actually occurred. Here we propose a novel meandering index which captures the maximum waviness in geopotential height contours at any given day, using all information of the full spatial position of each contour. Data are analysed on different time scale (from daily to 11 day running means) and both on hemispheric and regional scales. Using quantile regressions, we analyse how seasonal distributions of this index have changed over 1979-2015. The most robust changes are detected for autumn which has seen a pronounced increase in strongly meandering patterns at the hemispheric level as well as over the Eurasian sector. In summer for both the hemisphere and the Eurasian sector, significant downward trends in meandering are detected on daily timescales which is consistent with the recently reported decrease in summer storm track activity. The American sector shows the strongest increase in meandering in the warm season: in particular for 11 day running mean data, indicating enhanced amplitudes of quasi-stationary waves. Our findings have implications for both the occurrence of recent cold spells and persistent heat waves in the mid-latitudes.}, language = {en} }