@article{BalkBehlLendlein2020, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Actuators based on oligo[(epsilon-caprolactone)-co-glycolide] with accelerated hydrolytic degradation}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {5}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {12-13}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2019.447}, pages = {655 -- 666}, year = {2020}, abstract = {Polyester-based shape-memory polymer actuators are multifunctional materials providing reversible macroscopic shape shifts as well as hydrolytic degradability. Here, the function-function interdependencies (between shape shifts and degradation behaviour) will determine actuation performance and its life time. In this work, glycolide units were incorporated in poly(epsilon-caprolactone) based actuator materials in order to achieve an accelerated hydrolytic degradation and to explore the function-function relationship. Three different oligo[(epsilon-caprolactone)-co-glycolide] copolymers (OCGs) with similar molecular weights (10.5 +/- 0.5 kg center dot mol(-1)) including a glycolide content of 8, 16, and 26 mol\% (ratio 1:1:1 wt\%) terminated with methacrylated moieties were crosslinked. The obtained actuators provided a broad melting transition in the range from 27 to 44 degrees C. The hydrolytic degradation of programmed OCG actuators (200\% of elongation) resulted in a reduction of sample mass to 51 wt\% within 21 days at pH = 7.4 and 40 degrees C. Degradation results in a decrease of T-m associated to the actuating units and increasing T-m associated to the skeleton forming units. The actuation capability decreased almost linear as function of time. After 11 days of hydrolytic degradation the shape-memory functionality was lost. Accordingly, a fast degradation behaviour as required, e.g., for actuator materials intended as implant material can be realized.}, language = {en} } @article{AbbasiXuKhezrietal.2022, author = {Abbasi, Ali and Xu, Yaolin and Khezri, Ramin and Etesami, Mohammad and Lin, C. and Kheawhom, Soorathep and Lu, Yan}, title = {Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries}, series = {Materials Today Sustainability}, volume = {18}, journal = {Materials Today Sustainability}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2589-2347}, doi = {10.1016/j.mtsust.2022.100126}, pages = {17}, year = {2022}, abstract = {Zinc-air batteries (ZABs) are gaining popularity for a wide range of applications due to their high energy density, excellent safety, and environmental friendliness. A membrane/separator is a critical component of ZABs, with substantial implications for battery performance and stability, particularly in the case of a battery in solid state format, which has captured increased attention in recent years. In this review, recent advances as well as insight into the architecture of polymeric membrane/separators for ZABs including porous polymer separators (PPSs), gel polymer electrolytes (GPEs), solid polymer electrolytes (SPEs) and anion exchange membranes (AEMs) are discussed. The paper puts forward strategies to enhance stability, ionic conductivity, ionic selectivity, electrolyte storage capacity and mechanical properties for each type of polymeric membrane. In addition, the remaining major obstacles as well as the most potential avenues for future research are examined in detail.}, language = {en} } @article{BehlZhaoLendlein2020, author = {Behl, Marc and Zhao, Qian and Lendlein, Andreas}, title = {Glucose-responsive shape-memory cryogels}, series = {Journal of materials research : JMR}, volume = {35}, journal = {Journal of materials research : JMR}, number = {18}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/jmr.2020.204}, pages = {2396 -- 2404}, year = {2020}, abstract = {Boronic ester bonds can be reversibly formed between phenylboronic acid (PBA) and triol moieties. Here, we aim at a glucose-induced shape-memory effect by implementing such bonds as temporary netpoints, which are cleavable by glucose and by minimizing the volume change upon stimulation by a porous cryogel structure. The polymer system consisted of a semi-interpenetrating network (semi-IPN) architecture, in which the triol moieties were part of the permanent network and the PBA moieties were located in the linear polymer diffused into the semi-IPN. In an alkaline medium (pH = 10), the swelling ratio was approximately 35, independent of C-glu varied between 0 and 300 mg/dL. In bending experiments, shape fixity R-f approximate to 80\% and shape recovery R-r approximate to 100\% from five programming/recovery cycles could be determined. R-r was a function of C-glu in the range from 0 to 300 mg/dL, which accords with the fluctuation range of C-glu in human blood. In this way, the shape-memory hydrogels could play a role in future diabetes treatment options.}, language = {en} } @article{TentschertJungnickelReichardtetal.2014, author = {Tentschert, Jutta and Jungnickel, Harald and Reichardt, Philipp and Leube, Peter and Kretzschmar, Bernd and Taubert, Andreas and Luch, A.}, title = {Identification of nano clay in composite polymers}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {46}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.5546}, pages = {334 -- 336}, year = {2014}, abstract = {Industrialized food production is in urgent search for alternative packaging materials, which can serve the requirements of a globalized world in terms of longer product shelf lives, reduced freight weight to decrease transport costs, and better barrier functionality to preserve its freshness. Polymer materials containing organically modified nano clay particles as additives are one example for a new generation of packaging materials with specific barrier functionality to actually hit the market. Clay types used for these applications are aluminosilicates, which belong to the mineral group of phyllosilicates. These consist of nano-scaled thin platelets, which are organically modified with quaternary ammonium compounds acting as spacers between the different clay layers, thereby increasing the hydrophobicity of the mineral additive. A variety of different organically modified clays are already available, and the use as additive for food packaging materials is one important application. To ensure valid risk assessments of emerging nano composite polymers used in the food packaging industry, exact analytical characterization of the organically modified clay within the polymer matrix is of paramount importance. Time-of-flight SIMS in combination with multivariate statistical analysis was used to differentiate modified clay reference materials from another. Time-of-flight SIMS spectra of a reference polymer plate, which contained one specific nano clay composite, were acquired. For each modified clay additive, a set of characteristic diagnostic ions could be identified, which then was used to successfully assign unknown clay additives to the corresponding reference material. Thus, the described methodology could be used to define and characterize nano clay within polymer matrices. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{IzraylitGouldKratzetal.2020, author = {Izraylit, Victor and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {Investigating the phase-morphology of PLLA-PCL multiblock copolymer/PDLA blends cross-linked using stereocomplexation}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {14-15}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2019.465}, pages = {699 -- 707}, year = {2020}, abstract = {The macroscale function of multicomponent polymeric materials is dependent on their phase-morphology. Here, we investigate the morphological structure of a multiblock copolymer consisting of poly(L-lactide) and poly(epsilon-caprolactone) segments (PLLA-PCL), physically cross-linked by stereocomplexation with a low molecular weight poly(D-lactide) oligomer (PDLA). The effects of blend composition and PLLA-PCL molecular structure on the morphology are elucidated by AFM, TEM and SAXS. We identify the formation of a lattice pattern, composed of PLA domains within a PCL matrix, with an average domain spacing d0 = 12 - 19 nm. The size of the PLA domains were found to be proportional to the block length of the PCL segment of the copolymer and inversely proportional to the PDLA content of the blend. Changing the PLLA-PCL / PDLA ratio caused a shift in the melt transition Tm attributed to the PLA stereocomplex crystallites, indicating partial amorphous phase dilution of the PLA and PCL components within the semicrystalline material. By elucidating the phase structure and thermal character of multifunctional PLLA-PCL / PDLA blends, we illustrate how composition affects the internal structure and thermal properties of multicomponent polymeric materials. This study should facilitate the more effective incorporation of a variety of polymeric structural units capable of stimuli responsive phase transitions, where an understanding the phase-morphology of each component will enable the production of multifunctional soft-actuators with enhanced performance.}, language = {en} } @article{BehlBalkMansfeldetal.2021, author = {Behl, Marc and Balk, Maria and Mansfeld, Ulrich and Lendlein, Andreas}, title = {Phase morphology of multiblock copolymers differing in sequence of blocks}, series = {Macromolecular materials and engineering}, volume = {306}, journal = {Macromolecular materials and engineering}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-2054}, doi = {10.1002/mame.202000672}, pages = {9}, year = {2021}, abstract = {The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. It is hypothesized that a strictly alternating sequence should impact phase segregation. A library of well-defined MBC obtained by coupling oligo(epsilon-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification results in strictly alternating (MBCalt) or random (MBCran) MBC. The three different series has a weight average molecular weight (M-w) of 65 000, 165 000, and 168 000 g mol(-1) for MBCalt and 80 500, 100 000, and 147 600 g mol(-1) for MBCran. When the chain length of OCL building blocks is increased, the tendency for phase segregation is facilitated, which is attributed to the decrease in chain mobility within the MBC. Furthermore, it is found that the phase segregation disturbs the crystallization by causing heterogeneities in the semi-crystalline alignment, which is attributed to an increase of the disorder of the OCL semi-crystalline alignment.}, language = {en} } @article{JainWheelerEssetal.2019, author = {Jain, Varun and Wheeler, Joshua J. and Ess, Daniel H. and Noack, Sebastian and Vacogne, Charlotte D. and Schlaad, Helmut and Bahr, Stephan and Dietrich, Paul and Meyer, Michael and Thissen, Andreas and Linford, Matthew R.}, title = {Poly(gamma-benzyl l-glutamate), by near-ambient pressure XPS}, series = {Surface science spectra : SSS : an international journal \& database devoted to archiving spectra from surfaces \& interfaces}, volume = {26}, journal = {Surface science spectra : SSS : an international journal \& database devoted to archiving spectra from surfaces \& interfaces}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1055-5269}, doi = {10.1116/1.5109121}, pages = {10}, year = {2019}, abstract = {Near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i. e., at greater than 2500 Pa. In this study, poly(.- benzyl L- glutamate) (PBLG) with a molar mass of 11.3 kg/mol was analyzed by NAP-XPS; here, we show the survey, C 1s, N 1s, and O 1s narrow scans of PBLG. The C 1s peak envelope was fitted in three different ways, to five, six, or seven synthetic peaks. In each fit, there was also a shake-up signal. The O 1s narrow scan was well fit with three peaks: CZO and CvO in a 1:2 ratio from the polymer, and a higher energy signal from water vapor. Hartree-Fock orbital energies of a model monomer served as a guide to an additional fit of the C 1s envelope.}, language = {en} } @article{LuetzowWeigelLendlein2020, author = {L{\"u}tzow, Karola and Weigel, Thomas and Lendlein, Andreas}, title = {Solvent-based fabrication method for magnetic, shape-memory nanocomposite foams}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {14-15}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2019.422}, pages = {785 -- 795}, year = {2020}, abstract = {This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyetherurethane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 degrees C in a two-stage process, which was followed by freeze-drying. The average pore size increases with decreasing concentration of nanoparticles from 158 mu m to 230 mu m while the foam porosity remained constant. After fixation of a temporary form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 +/- 4\% in a thermochamber at 80 degrees C, and a slightly lower recovery rate of up to 65 +/- 4\% in a magnetic field.}, language = {en} }