@article{DeusdaraLealSamprognaMohorCuartasetal.2022, author = {Deusdar{\´a}-Leal, Karinne and Samprogna Mohor, Guilherme and Cuartas, Luz Adriana and Seluchi, Marcelo E. and Marengo, Jose A. and Zhang, Rong and Broedel, Elisangela and Amore, Diogo de Jesus and Alval{\´a}, Regina C. S. and Cunha, Ana Paula M. A. and Gon{\c{c}}alves, Jos{\´e} A. C.}, title = {Trends and climate elasticity of streamflow in south-eastern Brazil basins}, series = {Water}, volume = {14}, journal = {Water}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14142245}, pages = {25}, year = {2022}, abstract = {Trends in streamflow, rainfall and potential evapotranspiration (PET) time series, from 1970 to 2017, were assessed for five important hydrological basins in Southeastern Brazil. The concept of elasticity was also used to assess the streamflow sensitivity to changes in climate variables, for annual data and 5-, 10- and 20-year moving averages. Significant negative trends in streamflow and rainfall and significant increasing trend in PET were detected. For annual analysis, elasticity revealed that 1\% decrease in rainfall resulted in 1.21-2.19\% decrease in streamflow, while 1\% increase in PET induced different reductions percentages in streamflow, ranging from 2.45\% to 9.67\%. When both PET and rainfall were computed to calculate the elasticity, results were positive for some basins. Elasticity analysis considering 20-year moving averages revealed that impacts on the streamflow were cumulative: 1\% decrease in rainfall resulted in 1.83-4.75\% decrease in streamflow, while 1\% increase in PET induced 3.47-28.3\% decrease in streamflow. This different temporal response may be associated with the hydrological memory of the basins. Streamflow appears to be more sensitive in less rainy basins. This study provides useful information to support strategic government decisions, especially when the security of water resources and drought mitigation are considered in face of climate change.}, language = {en} } @article{GuzmanAriasSamprognaMohorMendiondo2022, author = {Guzman Arias, Diego Alejandro and Samprogna Mohor, Guilherme and Mendiondo, Eduardo Mario}, title = {Multi-driver ensemble to evaluate the water utility business interruption cost induced by hydrological drought risk scenarios in Brazil}, series = {Urban water journal}, journal = {Urban water journal}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1573-062X}, doi = {10.1080/1573062X.2022.2058564}, pages = {15}, year = {2022}, abstract = {Climate change and increasing water demand in urban environments necessitate planning water utility companies' finances. Traditionally, methods to estimate the direct water utility business interruption costs (WUBIC) caused by droughts have not been clearly established. We propose a multi-driver assessment method. We project the water yield using a hydrological model driven by regional climate models under radiative forcing scenarios. We project water demand under stationary and non-stationary conditions to estimate drought severity and duration, which are linked with pricing policies recently adopted by the Sao Paulo Water Utility Company. The results showed water insecurity. The non-stationary trend imposed larger differences in the drought resilience financial gap, suggesting that the uncertainties of WUBIC derived from demand and climate models are greater than those associated with radiative forcing scenarios. As populations increase, proactively controlling demand is recommended to avoid or minimize reactive policy changes during future drought events, repeating recent financial impacts.}, language = {en} }