@article{BehrendtSchlaad2018, author = {Behrendt, Felix Nicolas and Schlaad, Helmut}, title = {Entropy-Driven Ring-Opening Disulfide Metathesis Polymerization for the Synthesis of Functional Poly(disulfide)s}, series = {Macromolecular rapid communications}, volume = {39}, journal = {Macromolecular rapid communications}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201700735}, pages = {4}, year = {2018}, abstract = {Metal-free entropy-driven disulfide metathesis polymerization of unsaturated L-cystine based macrocycles produces high-molar-mass heterofunctional poly(disulfide)s, i.e., poly(ester-disulfide-alkene) and poly(amide-disulfide-alkene); M-w(app) = 44-60 kDa, (sic) > 1.7. The polymerization is fast and reaches equilibrium within 1-5 minutes (monomer conversion 70-90\%) in polar aprotic solvents such as N,N-dimethylacetamide, dimethylsulfoxide, or y-valerolactone. Thiol-terminated polymers are stable in bulk or when dissolved in weakly polar solvents, but rapidly depolymerize in dilute polar solution.}, language = {en} }