@article{Alexoudi2022, author = {Alexoudi, Xanthippi}, title = {On the parameter refinement of inflated exoplanets with large radius uncertainty based on TESS observations}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {343}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.20224012}, pages = {28}, year = {2022}, abstract = {We revisited 10 known exoplanetary systems using publicly available data provided by the transiting exoplanet survey satellite (TESS). The sample presented in this work consists of short period transiting exoplanets, with inflated radii and large reported uncertainty on their planetary radii. The precise determination of these values is crucial in order to develop accurate evolutionary models and understand the inflation mechanisms of these systems. Aiming to evaluate the planetary radius measurement, we made use of the planet-to-star radii ratio, a quantity that can be measured during a transit event. We fit the obtained transit light curves of each target with a detrending model and a transit model. Furthermore, we used emcee, which is based on a Markov chain Monte Carlo approach, to assess the best fit posterior distributions of each system parameter of interest. We refined the planetary radius of WASP-140 b by approximately 12\%, and we derived a better precision on its reported asymmetric radius uncertainty by approximately 86 and 67\%. We also refined the orbital parameters of WASP-120 b by 2 sigma. Moreover, using the high-cadence TESS datasets, we were able to solve a discrepancy in the literature, regarding the planetary radius of the exoplanet WASP-93 b. For all the other exoplanets in our sample, even though there is a tentative trend that planetary radii of (near-) grazing systems have been slightly overestimated in the literature, the planetary radius estimation and the orbital parameters were confirmed with independent observations from space, showing that TESS and ground-based observations are overall in good agreement.}, language = {en} } @article{DinevaPearsonIlyinetal.2022, author = {Dineva, Ekaterina Ivanova and Pearson, Jeniveve and Ilyin, Ilya and Verma, Meetu and Diercke, Andrea and Strassmeier, Klaus and Denker, Carsten}, title = {Characterization of chromospheric activity based on Sun-as-a-star spectral and disk-resolved activity indices}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {343}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.20223996}, pages = {23}, year = {2022}, abstract = {The strong chromospheric absorption lines Ca ii H \& K are tightly connected to stellar surface magnetic fields. Only for the Sun, spectral activity indices can be related to evolving magnetic features on the solar disk. The Solar Disk-Integrated (SDI) telescope feeds the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) of the Large Binocular Telescope (LBT) at Mt. Graham International Observatory, Arizona, U.S.A. We present high-resolution, high-fidelity spectra that were recorded on 184 \& 82 days in 2018 \& 2019 and derive the Ca ii H \& K emission ratio, that is, the S-index. In addition, we compile excess brightness and area indices based on full-disk Ca ii K-line-core filtergrams of the Chromospheric Telescope (ChroTel) at Observatorio del Teide, Tenerife, Spain and full-disk ultraviolet (UV) 1600 angstrom images of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Thus, Sun-as-a-star spectral indices are related to their counterparts derived from resolved images of the solar chromosphere. All indices display signatures of rotational modulation, even during the very low magnetic activity in the minimum of Solar Cycle 24. Bringing together different types of activity indices has the potential to join disparate chromospheric datasets yielding a comprehensive description of chromospheric activity across many solar cycles.}, language = {en} }