@article{HaasShpritsAllisonetal.2022, author = {Haas, Bernhard and Shprits, Yuri Y. and Allison, Hayley and Wutzig, Michael and Wang, Dedong}, title = {Which parameter controls ring current electron dynamics}, series = {Frontiers in astronomy and space sciences}, volume = {9}, journal = {Frontiers in astronomy and space sciences}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-987X}, doi = {10.3389/fspas.2022.911002}, pages = {11}, year = {2022}, abstract = {Predicting the electron population of Earth's ring current during geomagnetic storms still remains a challenging task. In this work, we investigate the sensitivity of 10 keV ring current electrons to different driving processes, parameterised by the Kp index, during several moderate and intense storms. Results are validated against measurements from the Van Allen Probes satellites. Perturbing the Kp index allows us to identify the most dominant processes for moderate and intense storms respectively. We find that during moderate storms (Kp < 6) the drift velocities mostly control the behaviour of low energy electrons, while loss from wave-particle interactions is the most critical parameter for quantifying the evolution of intense storms (Kp > 6). Perturbations of the Kp index used to drive the boundary conditions at GEO and set the plasmapause location only show a minimal effect on simulation results over a limited L range. It is further shown that the flux at L \& SIM; 3 is more sensitive to changes in the Kp index compared to higher L shells, making it a good proxy for validating the source-loss balance of a ring current model.}, language = {en} } @article{UsanovaShprits2017, author = {Usanova, Maria E. and Shprits, Yuri Y.}, title = {Inner magnetosphere coupling}, series = {Journal of geophysical research : Space physics}, volume = {122}, journal = {Journal of geophysical research : Space physics}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2016JA023614}, pages = {102 -- 104}, year = {2017}, abstract = {The dynamics of the inner magnetosphere is strongly governed by the interactions between different plasma populations that are coupled through large-scale electric and magnetic fields, currents, and wave-particle interactions. Inner magnetospheric plasma undergoes self-consistent interactions with global electric and magnetic fields. Waves excited in the inner magnetosphere from unstable particle distributions can provide energy exchange between different particle populations in the inner magnetosphere and affect the ring current and radiation belt dynamics. The ionosphere serves as an energy sink and feeds the magnetosphere back through the cold plasma outflow. The precipitating inner magnetospheric particles influence the ionosphere and upper atmospheric chemistry and affect climate. Satellite measurements and theoretical studies have advanced our understanding of the dynamics of various plasma populations in the inner magnetosphere. However, our knowledge of the coupling processes among the plasmasphere, ring current, radiation belts, global magnetic and electric fields, and plasma waves generated within these systems is still incomplete. This special issue incorporates extended papers presented at the Inner Magnetosphere Coupling III conference held 23-27 March 2015 in Los Angeles, California, USA, and includes modeling and observational contributions addressing interactions within different plasma populations in the inner magnetosphere (plasmasphere, ring current, and radiation belts), coupling between fields and plasma populations, as well as effects of the inner magnetosphere on the ionosphere and atmosphere.}, language = {en} }