@article{RoesslerKruegerRuempkeretal.2006, author = {R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and R{\"u}mpker, Georg and Psencik, Ivan}, title = {Tensile source components of swarm events in West Bohemia in 2000 by considering seismic anisotropy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12975}, year = {2006}, abstract = {Earthquake swarms occur frequently in West Bohemia, Central Europe. Their occurrence is correlated with and propably triggered by fluids that escape on the earth's surface near the epicentres. These fluids raise up periodically from a seemingbly deep-seated source in the upper mantle. Moment tensors for swarm events in 1997 indicate tensile faulting. However, they were determined under assumption of seismic isotropy although anisotropy can be observed. Anisotropy may obscure moment tensors and their interpretation. In 2000, more than 10,000 swarm earthquakes occurred near Novy Kostel, West Bohemia. Event triggering by fluid injection is likely. Activity lasted from 28/08 until 31/12/00 (9 phases) with maximum ML=3.2. High quality P-wave seismograms were used to retrieve the source mechanisms for 112 events between 28/08/00 and 30/10/00 using > 20 stations. We determine the source geometry using a new algorithm and different velocity models including anisotropy. From inversions of P waves we observe ML<3.2, strike-slip events on steep N-S oriented faults with additional normal or reverse components. Tensile components seem to be evident for more than 60\% of the processed swarm events in West Bohemia during the phases 1-7. Being most significant at great depths and at phases 1-4 during the swarm they are time and location dependent. Although tensile components are reduced when anisotropy is assumed they persist and seem to be important. They can be explained by pore-pressure changes due to the injection of fluids that raise up. Our findings agree with other observations e.g. correlation of fluid transport and seismicity, variations in b-value, forcing rate, and in pore pressure diffusion. Tests of our results show their significance.}, language = {en} } @article{StichMartinMoralesetal.2020, author = {Stich, Daniel and Martin, Rosa and Morales, Jose and Lopez-Comino, Jose Angel and Mancilla, Flor de Lis}, title = {Slip partitioning in the 2016 Alboran Sea earthquake sequence (western Mediterranean)}, series = {Frontiers in Earth Science}, volume = {8}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2020.587356}, pages = {19}, year = {2020}, abstract = {AM(W)= 5.1 earthquake on January 21st, 2016 marked the beginning of a significant seismic sequence in the southern Alboran Sea, culminating in aM(W)= 6.3 earthquake on January 25th, and continuing with further moderate magnitude earthquakes until March. We use data from 35 seismic broadband stations in Spain, Morocco and Portugal to relocate the seismicity, estimate seismic moment tensors, and isolate regional apparent source time functions for the main earthquake. Relocation and regional moment tensor inversion consistently yield very shallow depths for the majority of events. We obtain 50 moment tensors for the sequence, showing a mixture of strike-slip faulting for the foreshock and the main event and reverse faulting for the major aftershocks. The leading role of reverse focal mechanisms among the aftershocks may be explained by the geometry of the fault network. The mainshock nucleates at a bend along the left-lateral Al-Idrisi fault, introducing local transpression within the transtensional Alboran Basin. The shallow depths of the 2016 Alboran Sea earthquakes may favor slip-partitioning on the involved faults. Apparent source durations for the main event suggest a similar to 21 km long, asymmetric rupture that propagates primarily toward NE into the restraining fault segment, with fast rupture speed of similar to 3.0 km/s. Consistently, the inversion for laterally variable fault displacement situates the main slip in the restraining segment. The partitioning into strike-slip rupture and dip-slip aftershocks confirms a non-optimal orientation of this segment, and suggests that the 2016 event settled a slip deficit from previous ruptures that could not propagate into the stronger restraining segment.}, language = {en} } @article{SteinbergVasyuraBathkeGaebleretal.2021, author = {Steinberg, Andreas and Vasyura-Bathke, Hannes and Gaebler, Peter Jost and Ohrnberger, Matthias and Ceranna, Lars}, title = {Estimation of seismic moment tensors using variational inference machine learning}, series = {Journal of geophysical research : Solid earth}, volume = {126}, journal = {Journal of geophysical research : Solid earth}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2021JB022685}, pages = {16}, year = {2021}, abstract = {We present an approach for rapidly estimating full moment tensors of earthquakes and their parameter uncertainties based on short time windows of recorded seismic waveform data by considering deep learning of Bayesian Neural Networks (BNNs). The individual neural networks are trained on synthetic seismic waveform data and corresponding known earthquake moment-tensor parameters. A monitoring volume has been predefined to form a three-dimensional grid of locations and to train a BNN for each grid point. Variational inference on several of these networks allows us to consider several sources of error and how they affect the estimated full moment-tensor parameters and their uncertainties. In particular, we demonstrate how estimated parameter distributions are affected by uncertainties in the earthquake centroid location in space and time as well as in the assumed Earth structure model. We apply our approach as a proof of concept on seismic waveform recordings of aftershocks of the Ridgecrest 2019 earthquake with moment magnitudes ranging from Mw 2.7 to Mw 5.5. Overall, good agreement has been achieved between inferred parameter ensembles and independently estimated parameters using classical methods. Our developed approach is fast and robust, and therefore, suitable for down-stream analyses that need rapid estimates of the source mechanism for a large number of earthquakes.}, language = {en} }