@article{SchibalskiKoernerMaieretal.2018, author = {Schibalski, Anett and K{\"o}rner, Katrin and Maier, Martin and Jeltsch, Florian and Schr{\"o}der, Boris}, title = {Novel model coupling approach for resilience analysis of coastal plant communities}, series = {Ecological applications : a publication of the Ecological Society of America}, volume = {28}, journal = {Ecological applications : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1051-0761}, doi = {10.1002/eap.1758}, pages = {1640 -- 1654}, year = {2018}, abstract = {Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, for example, plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes such as regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling.}, language = {en} } @article{JackischZeheSamaniegoetal.2014, author = {Jackisch, Conrad and Zehe, Erwin and Samaniego, Luis and Singh, Anupam K.}, title = {An experiment to gauge an ungauged catchment: rapid data assessment and eco-hydrological modelling in a data-scarce rural catchment}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {59}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {12}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2013.870662}, pages = {2103 -- 2125}, year = {2014}, abstract = {We conducted a PUB (predictions in ungauged basins) experiment looking at hydrology and crop dynamics in the semi-arid rural Mod catchment in India. The experiment was motivated by the aims (a) to develop a coupled eco-hydrological model capable of analysing land-use strategies concerning crop water need, erosion protection, crop yield and resistivity against droughts and floods, and (b) to assess the feasibility of a strategy for collecting the necessary data in a data-scarce region. Our experiment combines parsimonious data assessment and eco-hydrological model coupling at the lower mesoscale. Linking bottom-up sampling of functionally representative soil classes and top-down regionalization based on spectral properties of the same resulted in a comprehensive distributed data basis for the model. A clear focus on the dominating processes and the catena as the organizing landscape element in the given environmental setting enabled this. We employed the WASA (Water Availability in Semi-Arid environments) model for uncalibrated process-based water balance modelling and integrated a crop simulation subroutine based on the SWAP (Soil Water Atmosphere Plant) model to account for crop dynamics, feedbacks and yield estimation. While we found the data assessment strategy and the hydrological model application largely feasible, in terms of its accounting for scale, processes and model concepts, the simulation of feedbacks with crops was problematic. Contributing to the PUB issue, more general conclusions are drawn concerning spatially-distributed structural information and uncalibrated modelling. [GRAPHICS] Editor Z.W. Kundzewicz; Associate editor F. Hattermann}, language = {en} }