@article{TaubertBalischewskiHentrichetal.2016, author = {Taubert, Andreas and Balischewski, Christian and Hentrich, Doreen and Elschner, Thomas and Eidner, Sascha and G{\"u}nter, Christina and Behrens, Karsten and Heinze, Thomas}, title = {Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization}, series = {Inorganics : open access journal}, volume = {4}, journal = {Inorganics : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2304-6740}, doi = {10.3390/inorganics4040033}, pages = {17}, year = {2016}, abstract = {The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10\% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.}, language = {en} } @article{RuprechtMutwilSaxeetal.2011, author = {Ruprecht, Colin and Mutwil, Marek and Saxe, Friederike and Eder, Michaela and Nikoloski, Zoran and Persson, Staffan}, title = {Large-scale co-expression approach to dissect secondary cell wall formation across plant species}, series = {Frontiers in plant science}, volume = {2}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2011.00023}, pages = {13}, year = {2011}, abstract = {Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.}, language = {en} } @article{SalamaNeumannGuenteretal.2014, author = {Salama, Ahmed and Neumann, Mike and G{\"u}nter, Christina and Taubert, Andreas}, title = {Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials}, series = {Beilstein journal of nanotechnology}, volume = {5}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.5.167}, pages = {1553 -- 1568}, year = {2014}, abstract = {Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/ chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies.}, language = {en} }