@article{SchwarzeGarzTeuchneretal.2014, author = {Schwarze, Thomas and Garz, Andreas and Teuchner, Klaus and Menzel, Ralf and Holdt, Hans-J{\"u}rgen}, title = {Two-photon probes for metal ions based on phenylaza[18]crown-6 ethers and 1,2,3-triazoles as pi-linkers}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {15}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201402232}, pages = {2436 -- 2439}, year = {2014}, language = {en} } @article{SchulzLieutenantXiaoetal.2020, author = {Schulz, Christian and Lieutenant, Klaus and Xiao, Jie and Hofmann, Tommy and Wong, Deniz and Habicht, Klaus}, title = {Characterization of the soft X-ray spectrometer PEAXIS at BESSY II}, series = {Journal of synchrotron radiation}, volume = {27}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5775}, doi = {10.1107/S1600577519014887}, pages = {238 -- 249}, year = {2020}, abstract = {The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 10(12) photons s(-1) within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of similar to 400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106 degrees within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to similar to 100 meV at 1000 eV incident photon energy are discussed.}, language = {en} } @article{RamachandranRupakhetiLawrence2020, author = {Ramachandran, Srikanthan and Rupakheti, Maheswar and Lawrence, Mark}, title = {Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills}, series = {Environment international : a journal of science, technology, health, monitoring and policy}, volume = {142}, journal = {Environment international : a journal of science, technology, health, monitoring and policy}, publisher = {Elsevier}, address = {Oxford}, issn = {0160-4120}, doi = {10.1016/j.envint.2020.105814}, pages = {12}, year = {2020}, abstract = {This study, based on new and high quality in situ observations, quantifies for the first time, the individual contributions of light-absorbing aerosols (black carbon (BC), brown carbon (BrC) and dust) to aerosol absorption over the Indo-Gangetic Plain (IGP) and the Himalayan foothill region, a relatively poorly studied region with several sensitive ecosystems of global importance, as well as highly vulnerable populations. The annual and seasonal average single scattering albedo (SSA) over Kathmandu is the lowest of all the locations. The SSA over Kathmandu is < 0.89 during all seasons, which confirms the dominance of light-absorbing carbonaceous aerosols from local and regional sources over Kathmandu. It is observed here that the SSA decreases with increasing elevation, confirming the dominance of light absorbing carbonaceous aerosols at higher elevations. In contrast, the SSA over the IGP does not exhibit a pronounced spatial variation. BC dominates (>= 75\%) the aerosol absorption over the IGP and the Himalayan foothills throughout the year. Higher BC concentration at elevated locations in the Himalayas leads to lower SSA at elevated locations in the Himalayas. The contribution of dust to aerosol absorption is higher throughout the year over the IGP than over the Himalayan foothills. The aerosol absorption over South Asia is very high, exceeding available observations over East Asia, and also exceeds previous model estimates. This quantification will be valuable as observational constraints to help improve regional simulations of climate change, impacts on the glaciers and the hydrological cycle, and will help to direct the focus towards BC as the main contributor to aerosol-induced warming in the region.}, language = {en} }