@article{ZakariasSalisWartenburger2018, author = {Zakarias, Lilla and Salis, Christos and Wartenburger, Isabell}, title = {Transfer effects on spoken sentence comprehension and functional communication after working memory training in stroke aphasia}, series = {Journal of neurolinguistics : an international journal for the study of brain function in language behavior and experience}, volume = {48}, journal = {Journal of neurolinguistics : an international journal for the study of brain function in language behavior and experience}, publisher = {Elsevier}, address = {Oxford}, issn = {0911-6044}, doi = {10.1016/j.jneuroling.2017.12.002}, pages = {47 -- 63}, year = {2018}, abstract = {Recent treatment protocols have been successful in improving working memory (WM) in individuals with aphasia. However, the evidence to date is small and the extent to which improvements in trained tasks of WM transfer to untrained memory tasks, spoken sentence comprehension, and functional communication is yet poorly understood. To address these issues, we conducted a multiple baseline study with three German-speaking individuals with chronic post stroke aphasia. Participants practised two computerised WM tasks (n-back with pictures and aback with spoken words) four times a week for a month, targeting two WM processes: updating WM representations and resolving interference. All participants showed improvement on at least one measure of spoken sentence comprehension and everyday memory activities. Two of them showed improvement also on measures of WM and functional communication. Our results suggest that WM can be improved through computerised training in chronic aphasia and this can transfer to spoken sentence comprehension and functional communication in some individuals.}, language = {en} } @article{HeinzelLorenzPelzetal.2016, author = {Heinzel, Stephan and Lorenz, Robert C. and Pelz, Patricia and Heinz, Andreas and Walter, Henrik and Kathmann, Norbert and Rapp, Michael Armin and Stelzel, Christine}, title = {Neural correlates of training and transfer effects in working memory in older adults}, series = {NeuroImage : a journal of brain function}, volume = {134}, journal = {NeuroImage : a journal of brain function}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2016.03.068}, pages = {236 -- 249}, year = {2016}, abstract = {As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12 sessions (45 min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75 years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{BruttelGueth2018, author = {Bruttel, Lisa Verena and Gueth, Werner}, title = {Asymmetric voluntary cooperation}, series = {International Journal of Game Theory}, volume = {47}, journal = {International Journal of Game Theory}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {0020-7276}, doi = {10.1007/s00182-018-0633-y}, pages = {873 -- 891}, year = {2018}, abstract = {This paper tests the robustness of voluntary cooperation in a sequential best shot game, a public good game in which the maximal contribution determines the level of public good provision. Thus, efficiency enhancing voluntary cooperation requires asymmetric behavior whose coordination is more difficult. Nevertheless, we find robust cooperation irrespective of treatment-specific institutional obstacles. To explain this finding, we distinguish three behavioral patterns aiming at both, voluntary cooperation and (immediate) payoff equality.}, language = {en} }